×
18.05.2019
219.017.5585

Результат интеллектуальной деятельности: СПОСОБ КОМПАКТИРОВАНИЯ ПОРОШКОВОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам компактирования порошковых материалов, к получению монолитных и прочных объектов путем воздействия динамического импульса на порошковые материалы. В предложенном способе, включающем взрывное сжатие порошкового материала, помещенного в контейнер, скользящей детонационной волной, возбуждаемой одноточечным инициированием слоя взрывчатого вещества, размещенного на наружной поверхности контейнера, на оси которого помещена геометрически подобная инертная масса, согласно изобретению используют контейнер осесимметричной формы в виде сферы, а инициирование осуществляют в точке на боковой поверхности слоя взрывчатого вещества, размещенного на всей наружной поверхности контейнера, причем слой взрывчатого вещества выполняют равно- или разнотолщинным в радиальном направлении. Обеспечивается увеличение выхода конечного продукта заданной формой.

Изобретение относится к способам компактирования порошковых материалов, а более точно к способам получения монолитных и прочных объектов путем воздействия динамического импульса на порошковые материалы.

Известно, что нагружение веществ ударными волнами приводит к реализации в них высоких динамических давлений и высоких температур, что позволяет получать и сохранять фазы высокого давления [1]. Ударное сжатие порошков сопровождается их уплотнением (взрывное уплотнение). Таким образом, удалось достичь самых высоких плотностей изделия [2].

Известен способ компактирования порошков с помощью баллистического пресса. Исходный образец помещается в прочную стальную матрицу. Варьируется начальная плотность запрессовки порошка при неизменной скорости плунжера (лайнера) [3] . Недостатком данного способа является невысокий конечный размер компактных образцов (десятые доли мм).

Известен способ получения компактного и прочного вещества, в котором испытываемый материал (порошок) помещается в прочные металлические ампулы сохранения, в корпусе которых генерируют ударные волны детонацией заряда взрывчатого вещества (ВВ), находящегося в контакте с корпусом ампулы, или ударом о стенки ампулы лайнера, разгоняемого продуктами взрыва (ПВ) до больших скоростей [4].

Под воздействием высоких динамических давлений и температур осуществляется компактирование исходного порошка. Недостатком данного способа является невысокий конечный размер компактных образований (единицы мм).

Известен способ взрывного компактирования вещества, в котором исследуемый порошок помещается внутрь тонкостенной металлической трубки. Вокруг трубки и сверху располагается ВВ. Подрыв происходит сверху. Генерируется плоская детонационная волна. Высокое давление ударной волны приводит к сжатию трубки и, тем самым, к уплотнению порошка. Схождение волны от стенок цилиндра к его оси приводит к увеличению давления и скорости (цилиндрическая кумуляция) [2].

Известен способ компактирования порошкообразного материала, включающий взрывное сжатие помещенного в контейнер порошкового материала, осуществляемое при одноточечном инициировании взрывчатого вещества (ВВ), размещенного на наружной поверхности контейнера, при этом используют контейнер осесимметричной формы, внутри на его оси предварительно помещают геометрически подобную инертную массу, а при инициировании ВВ в точке на поверхности слоя ВВ происходит возбуждение и распространение детонации в скользящем режиме (С.С. Кипарисов и др. Порошковая металлургия. М.: Металлургия, 1991, с.335, рис. 150 (г)). Данный способ принят за ближайший аналог.

Недостатком данного способа является то, что результат прессования решающим образом зависит от выбранных параметров взрывного воздействия. Так, использование самых высоких давлений не приводит к самым высоким плотностям изделия; для каждого порошкообразного материала необходимо подбирать оптимальные параметры.

Решаемая техническая задача заключается в достижении оптимальных динамических условий для реализации устойчивого компактирования порошкового материала.

Решение этой технической задачи позволит существенно увеличить выход конечного продукта, его геометрические размеры, а также получать компактные образования определенной заданной формы.

Технический результат достигается тем, что в предложенном способе, включающем взрывное сжатие порошкового материала, помещенного в контейнер, скользящей детонационной волной, возбуждаемой одноточечным инициированием слоя взрывчатого вещества, размещенного на наружной поверхности контейнера, на оси которого помещена геометрически подобная инертная масса, согласно изобретению используют контейнер осесимметричной формы в виде сферы, а инициирование осуществляют в точке на боковой поверхности слоя взрывчатого вещества, размещенного на всей наружной поверхности контейнера, причем слой взрывчатого вещества выполняют равно- или разнотолщинньм в радиальном направлении.

В металлический контейнер осесимметричной формы (сферический, цилиндрический и т.п.), внутри которого на его оси стационарно размещается геометрически подобная форме контейнера сплошная металлическая инертная масса меньшего размера, засыпается порошковый материал. Порошковый материал равномерно распределяется между инертной массой и стенками контейнера. Затем на всю внешнюю поверхность контейнера накладывается слой ВВ. Это могут быть две осесимметричные половины твердого ВВ, плотно контактирующие по торцу, слой порошкообразного, пастообразного или жидкого ВВ, равномерно заполняющий пространство между внешней поверхностью контейнера и внутренней поверхностью кожуха большего размера, предназначенного для сохранения требуемой формы порошкообразного, пастообразного или жидкого ВВ, причем данный слой ВВ может быть выполнен равнотолщинным или разнотолщинным в радиальном направлении. Контейнер в сборе устанавливается на открытой площадке, предназначенной для подрывов зарядов ВВ, перед ящиком с пористым материалом (обычно опилками). Инициирование слоя ВВ осуществляется в одной точке на боковой поверхности контейнера для возбуждения и распространения детонации в скользящем режиме. Под действием взрывного импульса контейнер летит и улавливается слоем пористого материала. Параметры заряда ВВ выбирают из условий получения давления и температуры ударной волны в порошковом материале, достаточных для реализации более плотной фазы по известным правилам.

Указанный технический результат достигается за счет следующих существенных отличий:
1. При скользящей детонации слоя ВВ, помещенного на наружную поверхность осесимметричного контейнера, осуществляемой инициированием в точке на боковой поверхности, реализуется сложное неодномерное длительное движение стенок контейнера по направлению к инертной массе. Стенки контейнера движутся как к геометрическому центру (движение по нормали), так и в боковом направлении (тангенциальное движение). Реализуется одновременное движение порошка к центру, и его сжатие, и тангенциальное перетекание частиц. Однако сдвиговое (тангенциальное) течение облегчает прохождение фазовых переходов [1] (в данном случае - переход от пористого вещества к сплошному). В известных способах используется длительное нагружение ударноволновым импульсом. Однако во всех этих способах осуществляется одномерное сжатие порошкового материала - по нормали к движущейся поверхности.

Таким образом, положительным моментом для процесса компактирования является неодномерность нагружения.

2. Осесимметричная форма контейнера в виде сферы способствует оптимальному деформированию и сжатию порошкового материала в радиальном и тангенциальном направлениях. Отсутствие резких изменений формы контейнера (острые и прямые углы) позволяет избежать аномально высокого сжатия и деформирования порошкового материала, которые приводят к потере требуемых свойств компактируемого материала, и повысить конечный выход продукта.

3. Слой ВВ, размещаемый на поверхности контейнера, может быть выполнен переменной толщины в радиальном направлении - под точкой инициирования этот слой толще, с противоположной стороны этот слой тоньше. Такой технологический прием позволяет понизить или вообще устранить отрицательное воздействие повышенного давления, реализующегося при столкновении детонационных волн, на стенку контейнера. Тем самым повышается степень сохранности контейнера. Размещенный на поверхности контейнера слой может представлять собой состав из твердого, порошкообразного, пастообразного или жидкого ВВ.

Техническую осуществимость данного способа можно проиллюстрировать на следующем примере. В сферический контейнер из стали 10 (две полуоболочки толщиной 5 мм, радиусом 100 мм свинчиваются по резьбе), геометрический центр которого стационарно заполнен инертной массой (шар из стали 12Х18Н10Т радиусом 50 мм крепится тремя шпильками к полуоболочкам), через отверстие засыпался стеклопорошок ШОС-125, изготовленный по ТУ 6-48-00204949-15-92. Размер отдельных частиц стеклопорошка 1 мкм≤Δ≤10 мкм. Засыпка была выполнена до насыпной плотности ρ≈1.4 г/см3 (весь рабочий объем контейнера был заполнен стеклопорошком). Затем засыпное отверстие закрывалось пробкой по резьбовому соединению. На внешнюю поверхность контейнера накладывался слой ВВ (две полуоболочки из тротила общей массой m≈9 кг плотно соединялись по торцу). Инициировался слой ВВ накладным зарядом в одной точке. Была реализована скользящая детонация слоя ВВ. Расчетно-экспериментальными методами показано, что полуоболочки сжимают стеклопорошок достаточно долго (t≈500 мкс), обеспечивая в нем давление Р≈30 ГПа. После подрыва ВВ контейнер улавливался в ящике с опилками, предварительно выставленном по оси инициирования слоя ВВ. Затем контейнер вскрывался. Материал извлекался из контейнера. После сложного двумерного динамического деформирования материал представляет собой компактный образец (несколько фрагментов размером 50...100 мм•50...100 мм, толщиной ~20 мм) плотностью ρ≈2.45 г/см3.

Скомпактированное вещество имеет белый непрозрачный цвет, его плотность соответствует плотности обыкновенного стекла, обладает твердостью выше твердости обыкновенного стекла (оставляет царапины на стекле). Достигнутый в экспериментах максимальный размер скомпактированного вещества существенно больше, чем достигаемый в опытах по одномерному нагружению, отличающихся сложностью постановки.

Используемый для компактирования порошкового материала контейнер может иметь цилиндрическую, сферическую или иную осесимметричную форму. Соответственно геометрически подобную форму будет иметь инертная масса, помещаемая внутри контейнера на его оси. При этом также достигается высокий положительный эффект.

Слой ВВ, размещаемый на поверхности контейнера, может быть выполнен переменной толщины в радиальном направлении. Этот слой может представлять собой состав из твердого, порошкообразного, пастообразного или жидкого ВВ.

ЛИТЕРАТУРА
1. Я. Б. Зельдович, Ю.П. Райзер "Физика ударных волн и высокотемпературных гидродинамических явлений" Москва, Главная редакция физико-математической литературы, 1966, с.688.

2. Р. Прюммер "Обработка порошкообразных материалов взрывом" Москва, Мир, 1990, с.128.

3. Э. Э. Лин, С.А. Новиков, В.Г. Куропаткин, В.А. Медведкин, В.И. Сухаренко "Динамическое компактирование ультрадисперсных алмазов" ФГВ, 1995, т. 31. 5, с.136-142.

4. Ю.Н. Рябинин "Сублимация кристаллической решетки под действием сильной ударной волны" ДАН СССР, 1956, т.109, с.289-291.

Способкомпактированияпорошковыхматериалов,включающийвзрывноесжатиепорошковогоматериала,помещенноговконтейнер,скользящейдетонационнойволной,возбуждаемойодноточечныминициированиемслоявзрывчатоговещества,размещенногонанаружнойповерхностиконтейнера,наосикоторогопомещенагеометрическиподобнаяинертнаямасса,отличающийсятем,чтоиспользуютконтейнеросесимметричнойформыввидесферы,аинициированиеосуществляютвточкенабоковойповерхностислоявзрывчатоговещества,размещенногонавсейнаружнойповерхностиконтейнера,причемслойвзрывчатоговеществавыполняютравно-илиразнотолщиннымврадиальномнаправлении.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 45.
11.03.2019
№219.016.de56

Газоразрядный импульсный источник света

Изобретение относится к светотехнике. Техническим результатом является уменьшение размеров тела свечения источника света, уменьшение длительности светового импульса и повышение яркости света. Устройство содержит наполненную рабочим газом газоразрядную камеру, образованную двумя стенками, по...
Тип: Изобретение
Номер охранного документа: 02195746
Дата охранного документа: 27.12.2002
20.03.2019
№219.016.ea72

Датчик ускорения

Использование: для регистрации действующих линейных ускорений в системах, применяемых в контейнерах, предназначенных для перевозки потенциально опасных грузов. Технический результат - повышение надежности работы и достоверности показаний, уменьшение габаритов. Сущность изобретения: в датчике...
Тип: Изобретение
Номер охранного документа: 02192645
Дата охранного документа: 10.11.2002
19.04.2019
№219.017.2d6b

Лазерный способ оптической градуировки развертки скоростного фоторегистратора

Изобретение относится к измерительной технике и может использоваться при исследовании быстропротекающих процессов (быстрое горение, взрыв, распространение ударных волн). Способ заключается в следующем: формируют входным объективом изображение исследуемого процесса в плоскости щели, которая...
Тип: Изобретение
Номер охранного документа: 02224276
Дата охранного документа: 20.02.2004
19.04.2019
№219.017.2d71

Способ совмещённой фоторегистрации двумя скоростными фотокамерами

Изобретение относится к технике фоторегистрации однократных, быстропротекающих процессов (быстрое горение, взрыв, распространение ударных волн) на светочувствительном носителе (фотопленке) и позволяет в диапазоне длительностей развертки от 1000 до 100 мкс при соответствующих скоростях развертки...
Тип: Изобретение
Номер охранного документа: 02227928
Дата охранного документа: 27.04.2004
19.04.2019
№219.017.2da5

Способ количественного газохроматографического определения воды в газовых смесях

Использование: аналитическая химия, газохроматографический анализ воды. Сущность изобретения: сначала проводят осушку измерительной системы перед дозированием исследуемой газовой смеси и концентрирование анализируемой пробы путем чередования продувки системы инертным газом при нагреве и...
Тип: Изобретение
Номер охранного документа: 02217743
Дата охранного документа: 27.11.2003
19.04.2019
№219.017.2db0

Кумулятивная боевая часть

Изобретение относится к области взрывных работ и может быть использовано для пробития сложных преград. Кумулятивная боевая часть включает корпус, по крайней мере, два заряда взрывчатого вещества с защитным экраном между ними, установленным с возможностью перемещения под действием продуктов...
Тип: Изобретение
Номер охранного документа: 02210723
Дата охранного документа: 20.08.2003
29.04.2019
№219.017.3f79

Дозировочный насос (варианты)

Насос предназначен для использования в технике дозирования жидких сред сильфонного типа и может быть применен в системах повышенного давления. По первому варианту насос содержит корпус с полостью, в которой размещен сильфон, входное и выходное устройства распределения жидкости. Один конец...
Тип: Изобретение
Номер охранного документа: 02208180
Дата охранного документа: 10.07.2003
29.04.2019
№219.017.3fc0

Локализующая система безопасности атомной электростанции

Изобретение относится к области иммобилизации газообразных радиоактивных отходов. Сущность изобретения: локализующая система безопасности атомной электростанции включает защитную оболочку ядерного реактора, помещенный в нее фильтр, патрубки ввода в фильтр парогазовой смеси и снабженный...
Тип: Изобретение
Номер охранного документа: 02236715
Дата охранного документа: 20.09.2004
09.05.2019
№219.017.4b81

Транзисторный радиопередатчик с автоматическим регулированием мощности

Изобретение относится к радиотехнике и может быть использовано при построении радиопередающих устройств. Техническим результатом является повышение надежности связи при каждом сеансе, который достигается тем, что устройство содержит усилитель мощности, датчик выходной мощности, три блока...
Тип: Изобретение
Номер охранного документа: 0002257670
Дата охранного документа: 27.07.2005
09.05.2019
№219.017.50c4

Способ синхронизации регистраторов с движением модели, находящейся в свободном полете

Изобретение относится к автоматизации измерений на аэродинамических установках. До полета рассчитывают траектории движения модели в зависимости от предлагаемых значений ее начальных скоростей, а также подтраектории движения модели и моменты срабатывания корректирующего датчика в зависимости от...
Тип: Изобретение
Номер охранного документа: 02173450
Дата охранного документа: 10.09.2001
Показаны записи 1-4 из 4.
11.03.2019
№219.016.d65d

Датчик ударных волн

Использование: для регистрации моментов выхода ударных и детонационных волн на поверхностях элементов исследуемого объекта, а также для измерения параметров ударных и детонационных волн. Сущность: датчик ударных волн содержит пьезоэлемент с электродами, рабочая поверхность которого...
Тип: Изобретение
Номер охранного документа: 0002262088
Дата охранного документа: 10.10.2005
11.03.2019
№219.016.d7c9

Способ обезвреживания объекта, содержащего взрывное устройство

Изобретение относится к способам ликвидации взрывоопасных объектов без детонации, например автомобилей, начиненных взрывными устройствами. Сущность изобретения заключается в окружении объекта легкоразрушаемым корпусом, перед установкой которого на опорную площадку под объектом или около него...
Тип: Изобретение
Номер охранного документа: 02218552
Дата охранного документа: 10.12.2003
Тип: Изобретение
Номер охранного документа: 0000064762
Дата охранного документа: 31.05.1945
18.05.2019
№219.017.557c

Способ испытания материалов на разрыв в условиях сложно-напряженного динамического нагружения

Изобретение относится к области испытания материалов на разрыв. Способ испытания материала на разрыв в условиях сложно-напряженного динамического нагружения заключается в воздействии на образец испытываемого материала ударной волной, создаваемой контактным взрывом заряда ВВ, размещенного в виде...
Тип: Изобретение
Номер охранного документа: 02221233
Дата охранного документа: 10.01.2004
+ добавить свой РИД