×
17.05.2019
219.017.52bc

Результат интеллектуальной деятельности: Тонкопленочный градиентометр

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники, более конкретно – к устройствам для измерения градиентов слабых магнитных полей. Раскрыт тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности. При этом чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности. Изобретение обеспечивает снижение величины шумов градиентометра и расширение рабочей полосы частот. 2 ил.

Изобретение относится к области измерительной техники, а более конкретно - к устройствам измерения градиентов слабых магнитных полей.

Известен класс приборов [Афанасьев, Ю.В. Средства измерений параметров магнитного поля / Ю.В. Афанасьев, Н.В. Студенцов, В.Н. Хорев, Е.Н. Чечурина, А.П. Щелкин. - Л.: Энергия. Ленингр. отд-ние, 1979. - 320 с., ил.], предназначенных для измерения градиента магнитного поля. Такие приборы находят широкое применение в магниторазведочных работах, каротажных исследованиях, магнитной дефектоскопии, при поиске массивных ферромагнитных объектов, в исследованиях магнитных полей биологических объектов и т.д. Чувствительная схема однокомпонентного градиентометра обычно состоит из двух включенных дифференциально измерительных преобразователей магнитной индукции, разнесенных на некоторое расстояние, называемой базой. В такой схеме построения градиентометра собственные шумы магнитометров являются некоррелированными, в результате чего происходит суммирование этих шумов на вычитающем элементе градиентометра.

Известна конструкция градиентометра, охваченного общей обратной связью [Патент США №6339328, МПК G01R 33/02, опубл. 01.15.2002], состоящего, по крайней мере, из двух датчиков магнитного поля (магнитометров), при этом как минимум у двух магнитометров направления максимальной чувствительности ориентированы соосно. В качестве датчиков магнитного поля могут быть использованы СКВИД-магнитометры, датчики Холла, феррозондовые магнитометры или магниторезистивные магнитометры. Магнитометр также включает вычислительный блок, на основе которого в цифровом виде реализованы алгоритмы адаптивной балансировки выходных сигналов магнитометров. В предпочтительном варианте исполнения градиентометр может содержать как минимум восемь магнитометров в трехмерном варианте компоновки и набор из трех пар общих ортогональных колец Гельмгольца, включенных в цепь обратной связи, по одной паре колец на каждое направление х, у, z, таким образом, что пять независимых компонент градиента магнитного поля могут быть измерены. Градиентометр также может использоваться для измерения компонентов градиента магнитного поля второго и более высокого порядка.

Известна конструкция градиентометра, имеющего в составе дополнительный магнитометр, предназначенный для реализации схемы вычитания постоянной составляющей магнитного поля из других магнитометров [Патент США №5122744, МПК G01R 33/035, опубл. 16.06.1992]. Такой градиентометр имеет, по крайней мере, три векторных (трехкомпонентных) СКВИД-магнитометра. Градиентометр включает опорный магнитометр и множество измерительных магнитометров, причем сигнал опорного магнитометра предназначен для компенсации постоянной составляющей магнитного поля, осуществляемой цепью обратной связи с компенсационными катушками. Подобным образом могут быть построены и схемы измерения градиентов более высокого порядка.

Недостатком известных конструкций является отсутствие возможности обеспечить одновременно высокую чувствительность градиентометра и широкую полосу частот с помощью предлагаемых магнитных датчиков. Как известно, при использовании в качестве чувствительных элементов градиентометра высокочувствительных СКВИД-магнитометров или феррозондовых магнитометров возможно достижение высокой чувствительности устройства только в ограниченном диапазоне частот - как правило, с верхней граничной частотой не более 10 кГц. Кроме того, известным недостатком СКВИД-магнитометров является необходимость их охлаждения до криогенных температур, что значительно затрудняет их практическое использование. Широкая полоса частот реализуется при использовании в качестве чувствительных элементов градиентометра датчиков Холла или магниторезистивных магнитометров, однако такие устройства обладают низкой чувствительностью.

Известна конструкция трехкомпонентного градиентометра, работающего при комнатной температуре [Koch, R.Н. Room temperature three sensor magnetic field gradiometer / R.H. Koch, G.A. Keefe, G. Allen // Review of Scientific Instruments, - 1996. - Vol. 67. - №1. - P. 230-235 (прототип)]. Устройство содержит трехкомпонентные феррозондовые магнитометры, не требующие охлаждения до криогенных температур. Для каждого из направлений измерений в конструкции предусмотрен опорный феррозондовый магнитометр, измеряющий магнитной поле. Выходной сигнал опорного магнитометра усиливается, буферизируется и прикладывается через переменные резисторы к двум компенсационным катушкам, внутри каждой из которых расположен измерительный феррозондовый магнитометр. Величины сопротивлений резисторов подбираются таким образом, чтобы при нахождении конструкции в однородном поле оба измерительных градиентометра находились в нулевом магнитном поле. Разница между выходными сигналами измерительных магнитометров, деленная на расстояние между ними (базу градиентометра), есть градиент магнитного поля в данном направлении. Описанный градиентометр взят за прототип заявленного изобретения.

Недостатком прототипа является его относительно низкая чувствительность, обусловленная высоким уровнем шумов используемых в его конструкции феррозондовых магнитометров. Кроме того, феррозондовые магнитометры имеют узкую полосу рабочих частот, как правило верхняя граничная частота которых не более 10 кГц.

Техническим результатом заявленного технического решения является снижение величины шумов градиентометра и расширение рабочей полосы частот.

Технический результат достигается тем, что в тонкопленочном градиентометре, для измерения градиентов слабых магнитных полей, включающем два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности, новым является то, что чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности.

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается использованием высокочувствительных магнитометров на основе резонаторов с тонкими магнитными пленками, причем существенным отличием является использование для двух магнитометров градиентометра одного общего генератора СВЧ-накачки.

Таким образом, перечисленные выше отличительные от прототипа признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Заявляемое изобретение представляет собой совокупность известных элементов, выбор которых и связь между которыми осуществлены на основании известных правил, но совместное использование этих элементов в такой функциональности не следует явным образом из известного уровня техники и способствует снижению величины шумов градиентометра и расширению рабочей полосы частот.

На основании вышеизложенного, заявляемое техническое решение соответствует критерию патентоспособности «изобретательский уровень».

Данное изобретение поясняется чертежами: на фиг. 1 показана печатная плата градиентометра с установленными электронными компонентами; на фиг. 2 показана конструкция градиентометра.

На многослойной печатной плате (1) тонкопленочного градиентометра (фиг. 1) размещен генератор (2) СВЧ-накачки, выход которого подключен к усилителю (3) мощности. Выход усилителя (3) мощности подключен параллельно к конденсаторам (4) и полосковым линиям (5) двух датчиков градиентометра. Тонкие магнитные пленки (ТМП) (6) размещены под полосковыми линиями (5) таким образом, чтобы высокочастотное магнитное поле было направлено строго вдоль оси трудного намагничивания ТМП. Величины емкостей конденсаторов (4) и индуктивностей полосков (5) выбраны таким образом, чтобы резонансные частоты образованных ими колебательных контуров находились в области частот 600-800 МГц (для ТМП состава Ni80Fe20). Входы амплитудных детекторов (7) подключены к колебательным контурам, образованным конденсаторами (4) и полосковыми линиями (5). Выходы амплитудных детекторов (7) подключены последовательно к операционным усилителям (размещены на нижней стороне печатной платы (1)) и компенсационным катушкам (8). Выходные сигналы операционных усилителей являются выходными сигналами магнитометров. Выходы магнитометров подключены к вычитающему элементу градиентометра (размещен на нижней стороне печатной платы (1)). Постоянное поле смещения в ТМП (6) формируется магнитными системами (9), состоящими из постоянных магнитов и направлено под небольшим углом к осям трудного намагничивания ТМП. Печатная плата (1), компенсационные катушки (8) и магнитные системы (9) размещены на основании (10). Выходной сигнал вычитающего элемента является выходным сигналом градиентометра.

Устройство работает следующим образом. Рассмотрим работу одного датчика градиентометра. Сигнал с размещенного на печатной плате (1) общего для двух датчиков генератора (2) СВЧ-накачки поступает на общий усилитель (3) мощности, а затем на конденсатор (4) и полосковую линию (5), формирующую магнитное поле в ТМП (6). Высокочастотное магнитное поле, создаваемое полосковой линией (5), направлено вдоль оси трудного намагничивания ТМП (6) и возбуждает ферромагнитный резонанс (ФМР). Условия возбуждения ФМР определяются величиной и направлением поля смещения. Так как поле смещения ориентировано под небольшим углом к оси трудного намагничивания ТМП (6), а внешнее измеряемое поле направлено вдоль оси легкого намагничивания ТМП (6), изменение величины измеряемого поля приводит к изменению параметров ФМР, что в свою очередь приводит к изменению потерь, вносимых ТМП (6) в колебательный контур, образованный конденсатором (4) и полосковой линией (5). Изменение потерь в контуре регистрируется амплитудным детектором (7). Повышение долговременной стабильности коэффициента преобразования датчика достигается путем использования компенсационного метода измерения, для этого выходной сигнал магнитометра подается на катушку (8) обратной связи. Постоянное поле смещения формируется магнитной системой (9). Аналогично работает второй датчик градиентометра. Общая для двух датчиков печатная плата (1), компенсационные катушки (8) и магнитные системы (9) объединены основанием (10). Сигналы двух магнитометров поступают на вычитающий элемент градиентометра, выходной сигнал которого передается потребителю. Основным источником шумов датчиков слабых магнитных полей на основе микрополосковых резонаторов с тонкими магнитными пленками является генератор СВЧ-накачки [Бабицкий, А. Магнитометр слабых квазистационарных и высокочастотных полей на резонансных микрополосковых преобразователях с тонкими магнитными пленками / А.Н. Бабицкий, Б.А. Беляев, Н.М. Боев, Г.В. Скоморохов, А.В. Изотов, Р.Г. Галеев // Приборы и техника эксперимента, - 2016. - №3. - С. 96-104.].

Экспериментальные исследования тонкопленочного градиентометра показали, что применение одного генератора СВЧ-накачки для двух чувствительных элементов градиентометра позволяет вычитать шумы отдельных датчиков на вычитающем элементе градиентометра, что снижает итоговый уровень шума. Использование в градиентометре датчиков слабых магнитных полей на основе тонких магнитных пленок позволило существенно расширить частотный диапазон устройства, на практике разработаны конструкции на частоты до 105 Гц.

Тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности, отличающийся тем, что чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности.
Тонкопленочный градиентометр
Тонкопленочный градиентометр
Источник поступления информации: Роспатент

Показаны записи 31-40 из 55.
20.05.2019
№219.017.5c3c

Полосно-пропускающая частотно-селективная поверхность

Полосно-пропускающая частотно-селективная поверхность относится к микроволновой и оптической технике и может быть использовано в антеннах систем связи, преобразователях частоты и спектрометрах в диапазоне от сантиметровых до микронных длин волн. Частотно-селективная поверхность содержит...
Тип: Изобретение
Номер охранного документа: 0002687878
Дата охранного документа: 16.05.2019
20.06.2019
№219.017.8da5

Чувствительный элемент сканирующего спектрометра ферромагнитного резонанса

Использование: для измерения спектров поглощения тонкопленочных магнитных образцов. Сущность изобретения заключается в том, что устройство содержит корпус, внутри которого на верхней стороне печатной платы размещены СВЧ-генератор и амплитудный детектор, а нижняя сторона служит экраном с...
Тип: Изобретение
Номер охранного документа: 0002691996
Дата охранного документа: 19.06.2019
20.06.2019
№219.017.8de3

Микрополосковый диплексер

Микрополосковый диплексер относится к радиотехнике. Микрополосковый диплексер содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую сторону нанесены полосковые проводники резонаторов и П-образный проводник согласующей цепи, причем резонаторы...
Тип: Изобретение
Номер охранного документа: 0002691999
Дата охранного документа: 19.06.2019
25.07.2019
№219.017.b89c

Способ обеспечения проведения физических измерений в проточном термостате при температурах выше комнатной

В способе обеспечения проведения физических измерений в проточном термостате при температурах выше комнатной газообразный теплоноситель нагревают техническим феном, герметично подсоединенным к входу канала термостата, а ток газообразного теплоносителя в канале термостата создают за счет...
Тип: Изобретение
Номер охранного документа: 0002695482
Дата охранного документа: 23.07.2019
08.11.2019
№219.017.df88

Способ производства пряников

Изобретение относится к пищевой промышленности. Способ приготовления пряников включает замес теста из муки пшеничной высшего сорта, сахара-песка, воды, растительного масла, углеаммонийной соли, формование, выпекание и охлаждение. В тесто дополнительно вводят растительную добавку, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002705140
Дата охранного документа: 06.11.2019
21.11.2019
№219.017.e463

Чувствительный элемент тонкопленочного магнитометра

Изобретение относится к измерительной технике, а более конкретно - предназначено для измерения слабых магнитных полей, и может использоваться в магнитометрии. Чувствительный элемент состоит из печатной платы, на верхней стороне которой размещаются два СВЧ-резонатора, включающих одну общую...
Тип: Изобретение
Номер охранного документа: 0002706436
Дата охранного документа: 19.11.2019
29.11.2019
№219.017.e79c

Электрически управляемый поляризатор света на основе анизотропии светорассеяния

Электрически управляемый поляризатор света на основе анизотропии светорассеяния, обладающий высокими светопропусканием и поляризующей способностью, относится к оптоэлектронной технике, в частности к устройствам и элементам, основанным на жидких кристаллах и предназначенным для управления...
Тип: Изобретение
Номер охранного документа: 0002707424
Дата охранного документа: 26.11.2019
29.11.2019
№219.017.e79f

Чувствительный элемент сканирующего спектрометра ферромагнитного резонанса с частотной подстройкой

Изобретение относится к измерительной технике и предназначено для неразрушающего контроля качества и однородности магнитных пленок путем регистрации (записи) спектров ферромагнитного резонанса от локальных участков тонкопленочных образцов. Чувствительный элемент сканирующего спектрометра...
Тип: Изобретение
Номер охранного документа: 0002707421
Дата охранного документа: 26.11.2019
05.02.2020
№220.017.fddc

Тонкопленочный магнитометр слабых магнитных полей

Изобретение относится к измерительной технике и может использоваться в магнитометрии. Сущность изобретения заключается в том, что в тонкопленочном магнитометре слабых магнитных полей под углом α к оси трудного намагничивания тонкой магнитной пленки с помощью дополнительной магнитной системы и...
Тип: Изобретение
Номер охранного документа: 0002712926
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fdef

Тонкопленочная магнитная антенна

Изобретение относится к измерительной технике и предназначено для измерения величины и направления слабых магнитных полей в широком диапазоне частот и может использоваться в первую очередь в магнитометрии. Тонкопленочная магнитная антенна содержит СВЧ-генератор, тонкую магнитную пленку,...
Тип: Изобретение
Номер охранного документа: 0002712922
Дата охранного документа: 03.02.2020
Показаны записи 31-40 из 73.
07.02.2019
№219.016.b7e4

Сверхширокополосное поглощающее покрытие

Изобретение относится к технике сверхвысоких частот и предназначено для уменьшения радиолокационной заметности объектов военной техники, например летательных аппаратов. Сверхширокополосное поглощающее покрытие содержит диэлектрические слои, на поверхности которых нанесена двумерно-периодическая...
Тип: Изобретение
Номер охранного документа: 0002678937
Дата охранного документа: 04.02.2019
16.03.2019
№219.016.e1a8

Датчик слабых магнитных полей

Изобретение относится к измерительной технике, а именно предназначено для измерения слабых магнитных полей, и может использоваться, в первую очередь, в магнитометрии. Датчик слабых магнитных полей содержит СВЧ-генератор, чувствительный элемент на основе тонкой магнитной пленки, помещенной в...
Тип: Изобретение
Номер охранного документа: 0002682076
Дата охранного документа: 14.03.2019
10.04.2019
№219.017.08ef

Коаксиальный резонатор

Коаксиальный резонатор относится к технике сверхвысоких частот и предназначен для создания частотно-селективных устройств СВЧ, задающих цепей автогенераторов и др. Коаксиальный резонатор содержит корпус - экран, внутри которого расположен отрезок коаксиального волновода, заполненного...
Тип: Изобретение
Номер охранного документа: 0002449432
Дата охранного документа: 27.04.2012
11.04.2019
№219.017.0b5a

Полосковый фильтр

Использование: для создания полосовых фильтров. Сущность изобретения заключается в том, что полосковый полосно-пропускающий фильтр содержит две параллельные диэлектрические подложки, подвешенные между экранами корпуса 2, на обе поверхности которых нанесены полосковые металлические проводники,...
Тип: Изобретение
Номер охранного документа: 0002684438
Дата охранного документа: 09.04.2019
20.05.2019
№219.017.5c3c

Полосно-пропускающая частотно-селективная поверхность

Полосно-пропускающая частотно-селективная поверхность относится к микроволновой и оптической технике и может быть использовано в антеннах систем связи, преобразователях частоты и спектрометрах в диапазоне от сантиметровых до микронных длин волн. Частотно-селективная поверхность содержит...
Тип: Изобретение
Номер охранного документа: 0002687878
Дата охранного документа: 16.05.2019
24.05.2019
№219.017.5f51

Микрополосковый полосно-пропускающий фильтр

Изобретение относится к радиотехнике, в частности к фильтрам. Микрополосковый полосно-пропускающий фильтр содержит микрополосковые резонаторы, разделенные металлическими экранами и расположенные с образованием не менее чем двух ярусов, взаимодействие которых осуществляется через поперечную...
Тип: Изобретение
Номер охранного документа: 0002688826
Дата охранного документа: 22.05.2019
20.06.2019
№219.017.8da5

Чувствительный элемент сканирующего спектрометра ферромагнитного резонанса

Использование: для измерения спектров поглощения тонкопленочных магнитных образцов. Сущность изобретения заключается в том, что устройство содержит корпус, внутри которого на верхней стороне печатной платы размещены СВЧ-генератор и амплитудный детектор, а нижняя сторона служит экраном с...
Тип: Изобретение
Номер охранного документа: 0002691996
Дата охранного документа: 19.06.2019
20.06.2019
№219.017.8de3

Микрополосковый диплексер

Микрополосковый диплексер относится к радиотехнике. Микрополосковый диплексер содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую сторону нанесены полосковые проводники резонаторов и П-образный проводник согласующей цепи, причем резонаторы...
Тип: Изобретение
Номер охранного документа: 0002691999
Дата охранного документа: 19.06.2019
29.06.2019
№219.017.9bdb

Микрополосковое защитное устройство

Изобретение предназначено для защиты радиоприемных устройств от воздействия электромагнитных колебаний большой мощности в СВЧ-диапазоне. Технический результат - увеличение предельной мощности СВЧ-колебаний, с которой может работать защитное устройство, благодаря улучшению отражения этих...
Тип: Изобретение
Номер охранного документа: 0002340046
Дата охранного документа: 27.11.2008
23.08.2019
№219.017.c24b

Микрополосковый диплексер

Изобретение относится к радиотехнике, в частности к диплексерам. Микрополосковый диплексер состоит из диэлектрической подложки, одна сторона которой металлизирована и выполняет функцию заземляемого основания, а на вторую нанесены полосковые проводники. На центральном проводнике, свернутом в...
Тип: Изобретение
Номер охранного документа: 0002697891
Дата охранного документа: 21.08.2019
+ добавить свой РИД