×
09.05.2019
219.017.507b

Результат интеллектуальной деятельности: ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ДИБОРИДА ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к электрохимическому способу получения нанопорошков диборида титана, может быть использовано в получении неоксидной керамики для высокотемпературных агрегатов типа электролизера для производства алюминия. Нанопорошки диборида титана получают импульсной анодно-катодной поляризацией титана в расплавленной эвтектической смеси хлоридов цезия и натрия, содержащей от 0,2 до 2,0 мас.% оксида бора при температуре в интервале 810-840 К в атмосфере аргона. Технический результат заключается в упрощении технологии получения нанопорошка диборида титана и повышении выхода годного. 2 ил., 1 пр.

Изобретение относится к получению нанопорошков диборида титана и может быть использовано в получении неоксидной керамики, обладающей рядом уникальных свойств, необходимых, например, в высокотемпературных агрегатах типа электролизера для производства алюминия.

Промышленные способы получения порошков диборида титана основываются по большей части на высокотемпературном карботермическом восстановлении смеси рутила и борной кислоты при температурах выше 1800 К: ТiO22O3+5С→TiB2+5СО.

При температурах 1313-1473 К в атмосфере аргона эта реакция протекает с образованием вискеров диборида титана (L'.Bača, N.Stelzer, Adapting of sol-gel process for preparation of TiB2 powder from low-cost precursors // J.European Ceramic Society, 28, 5, 2008, 907-911) [1], R.V.Krishnarao, J.Subrahmanyam, Studies on the formation of TiB2 through carbothermal reduction of TiO2 and В2O3 // Materials Science and Engineering A, 362, 1-2, 2003, 145-151) [2]. Самораспространяющийся высокотемпературный синтез (CBC) позволяет получать порошки диборида титана высокой чистоты. Реакционная смесь, как правило, состоит из порошкообразного металла - магния или алюминия - диоксида титана и оксида бора:

ТiO22O3+5MgO→TiB2+5MgO (W.Weimin, F.Zhengyi, W.Hao, Y.Runzhang, Chemistry reactions processes during combustion synthesis of B2O3-ТiO2 - Mg system // J/Mater. Proc.Technol., 2002, 128, 162-168) [3].

Этот процесс становится более быстрым и идет со 100% выходом, если предварительно активировать порошки реагентов механохимическим методом. При этом синтезируются порошки диборида титана с размерами 30-40 нм (R.Ricceri, P.Matteazzi, A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis // Materials science and engineering A, 379, 2004, 341-346)[4].

В другой модификации этого метода используется хлорид натрия как разбавитель (A.K.Khanra, L.Ch.Pathak, S.K.Mishra, M.M.Godkhindi, Effect of NaCl on the synthesis of TiB2 powder by self-propagating high-temperature synthesis technique // Mater.Lett, 2004, 58, 733-738) [5]. Эти материалы смешиваются и помещаются в высокотемпературный тигель. Затем смесь зажигают, температура смеси достигает 2000°С и приводит к полному взаимодействию оксидов и порошка металла.

Известна также возможность получения электротермическим методом (Марковский Л.Я., Оршанский Д.Л., Прянишников В.П. Химическая электротермия. М., Госхимиздат, 1952, 408 с.) [6] диборида титана спеканием в электрической печи, в защитной атмосфере аргона, спрессованной смеси порошков карбидов титана и бора, реагирующих при температуре порядка 2200 К по реакции: 2TiC+B4C→2TiB2+3С.

Нанокристаллический диборид титана с близким по распределению размером частиц может быть приготовлен методом восстановления с последующим борированием при 400°С, в котором трибромид бора и титановый порошок использовались как реагенты, а металлический натрий - как восстановитель (L.Chen, Y.Gu, L.Shi, Z.Yang, J.Ma, Y.Qian, A reduction-boronation route to nanocrystalline titanium diboride // Solid State Commun., 2004, 130, 231-233) [7]. Предлагается способ получения нанокристаллического диборида титана по сольвотермической реакции TiCl4 с NaBH4 при 500-700°С в автоклаве (L.Chen, Y.Gu, Y.Qian, L.Shi, Z.Yang, J.Ma, A facile one-step route to nanocrystalline TiB2 powders // Mater.Res.Bull., 2004, 39, 609-613)[8], (С.E.Кравченко, В.И.Торбов, С.П.Шилкин. Получение наноразмерного порошка диборида титана // Неорганические материалы, том 46, №6, Июнь 2010, С.691-693) [9].

Нанокристаллический порошок диборида титана может быть синтезирован адаптированным методом Печини для синтеза неоксидных порошков взаимодействием дешевых неорганических прекурсоров (TiCl4 и В2O3) с лимонной кислотой и полимеризацией этиленгликолем с последующим отжигом при 700-1600°С.Одним из самых распространенных методов синтеза порошков диборида титана в настоящее время является восстановление смесью карбида бора и графита (C.Subramanian, T.S.R.Ch.Murthy, A.K.Suri, Synthesis and consolidation of titanium diboride // International J.Refractory metals and hard materials, 25, 2007, 345-350) [10]. Карбид бора восстанавливает оксид титана по реакции:

2ТiO24С+С→2TiB2+4СО↑.

Однако формирование диборида титана по этой реакции термодинамически возможно только при температурах выше 1257 К, т.к. при более низких температурах величины энергий Гиббса отрицательны. Кроме того, для получения диборида титана необходим высокий вакуум.

В известном способе получении нанопорошков диборида титана (RU 2354503, публ. 2009 г.) [11] процесс синтеза диборида титана осуществляют одновременным восстановлением трихлорида бора и тетрахлорида титана натрием при температуре 900-1000°С (см. Пример). При этом известно, что трихлорид бора и тетрахлорид титана чрезвычайно летучие вещества. При высокой температуре процесса унос этих веществ из реактора будет крайне высоким, проконтролировать его известными средствами невозможно.

Электрохимический синтез порошка диборида титана дешевле и проще известных способов. В зависимости от параметров процесса могут быть получены ультрадисперсные порошки, состав осадка может быть тщательно проконтролирован при помощи параметров процесса осаждения. Процесс имеет довольно низкую температуру синтеза.

Задача настоящего изобретения заключается в электрохимическом получении нанопорошков диборида титана. Для этого заявлен электрохимический способ получения нанопорошков диборида титана, характеризующийся импульсной анодно-катодной поляризацией титана в расплавленной эвтектической смеси хлоридов цезия и натрия, содержащей от 0,2 до 2,0 мас.% оксида бора при температуре в интервале 810-840 К в атмосфере аргона.

В заявленном способе синтез нанопорошка диборида титана идет восстановлением оксида бора металлическим титаном при температуре 810-840 К (540-570°С) по формуле: 5Ti+2B2O3→2TiB2+3TiO2. Образующийся в результате этой реакции нанокристаллический диоксид титана легко может быть отделен после растворения солевого электролита в дистиллированной воде: более тяжелые частицы диборида титана оседают на дно, а более легкие - диоксида титана остаются в растворе в виде взвеси. При необходимости образующийся диоксид титана может быть также удален растворением осадка, например, в соляной кислоте. Процесс идет в одну стадию, необходимости в дополнительном восстановителе нет. Летучие вещества в заявленном способе не используются, потерь титана нет, т.к. практически весь титан переходит в порошок диборида титана.

Таким образом, новый технический результат, достигаемый заявленным изобретением, заключается в упрощении технологии получения нанопорошка диборида титана и повышении выхода годного.

Пример

В кварцевую ячейку помещаем 50 г мелкораздробленной смеси хлоридов цезия и натрия, добавляли к ней 0.2 мас.% порошкообразного оксида бора (0.1 г), ячейку закрывали вакуумной пробкой, вакуумировали, нагревали до температуры 840 К (570°С) при непрерывной откачке, после чего наполняли газовое пространство ячейки аргоном марки «вч». Образец титана с площадью 4 см2 на титановом токоподводе опускали в расплав и немедленно начинали поляризацию в импульсном режиме с плотностью анодного тока 0.8 мА·см-2 и плотностью катодного тока 1 мА·см-2 с длительностью импульсов как анодного, так и катодного тока 100 сек в течение 2 ч. При этом весь титановый образец переходит в диборид титана, представляющий собой агломерированный нанопорошок. Размер отдельных частиц составляет 20-50 нм. Полученный порошок представлен на микрофотографиях (фиг.1, 2).

Электрохимический способ получения нанопорошков диборида титана, характеризующийся тем, что осуществляют импульсную анодно-катодную поляризацию титана в расплавленной эвтектической смеси хлоридов цезия и натрия, содержащей от 0,2 до 2,0 мас.% оксида бора, при температуре в интервале 810-840 К в атмосфере аргона.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 94.
29.03.2019
№219.016.ed71

Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха и малых концентраций водорода в газовых смесях. Датчик содержит три диска из протонпроводящего твердого электролита, герметично соединенные между собой с образованием двух полостей между...
Тип: Изобретение
Номер охранного документа: 0002683134
Дата охранного документа: 26.03.2019
10.04.2019
№219.016.feea

Способ создания билатеральной костной модели для исследования интеграции остеотропных материалов в эксперименте

Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани. Производят разрез в области коленного сустава....
Тип: Изобретение
Номер охранного документа: 0002684356
Дата охранного документа: 08.04.2019
19.04.2019
№219.017.321d

Способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода. В способе в процессе электролиза измеряют потенциал анода...
Тип: Изобретение
Номер охранного документа: 0002457286
Дата охранного документа: 27.07.2012
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
24.05.2019
№219.017.5dcc

Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии

Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин...
Тип: Изобретение
Номер охранного документа: 0002688944
Дата охранного документа: 23.05.2019
09.06.2019
№219.017.7dd6

Тепловая батарея

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока (ТХИТ), и может быть использовано в источниках электропитания как средств управления, так и активного питания силовых электрических агрегатов. Согласно изобретению тепловая батарея содержит...
Тип: Изобретение
Номер охранного документа: 0002457586
Дата охранного документа: 27.07.2012
22.06.2019
№219.017.8e32

Способ получения керамики со структурой майенита

Способ получения керамики со структурой майенита может быть использован для получения керамики, входящей в состав электрохимических устройств. Способ характеризуется тем, что порошки прекурсоров получают из раствора нитратов с использованием смеси исходных компонентов нитрата алюминия и...
Тип: Изобретение
Номер охранного документа: 0002459781
Дата охранного документа: 27.08.2012
27.06.2019
№219.017.92ec

Способ оценки степени интеграции остеозамещающих материалов

Изобретение относится к медицине, а именно к количественной оценке степени остеоинтеграции материалов, а также их влиянию на репаративную регенерацию костной ткани. Способ оценки степени интеграции остеозамещающих материалов включает оценку степени интеграции имплантата по...
Тип: Изобретение
Номер охранного документа: 0002692668
Дата охранного документа: 25.06.2019
27.06.2019
№219.017.9894

Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам-молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур, а именно: оснащения водородных...
Тип: Изобретение
Номер охранного документа: 0002692543
Дата охранного документа: 25.06.2019
13.07.2019
№219.017.b36b

Электрохимическое устройство для дозирования кислорода в газовой среде и одновременного контроля кислородосодержания газа на входе и выходе из кислородного насоса

Изобретение относится к области электротехники, а именно к электрохимическому устройству для дозирования кислорода в газовой среде и одновременного контроля его содержания на входе и выходе из кислородного насоса, и может быть использовано для очистки газовых смесей от кислорода, а также для...
Тип: Изобретение
Номер охранного документа: 0002694275
Дата охранного документа: 11.07.2019
Показаны записи 11-11 из 11.
03.10.2019
№219.017.d170

Алюминий-ионная батарея

Изобретение относится к химическим источникам тока. Химический перезаряжаемый источник тока содержит в поперечном сечении чередующиеся слои катода, сепаратора и плоского анода. Анод выполнен из алюминий-графенового композиционного материала, содержащего от 99 до 99,9 мас. % алюминия,...
Тип: Изобретение
Номер охранного документа: 0002701680
Дата охранного документа: 01.10.2019
+ добавить свой РИД