×
08.05.2019
219.017.4919

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, а именно к неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения. Предложен способ измерения теплового сопротивления между корпусом полупроводникового прибора и радиатором охлаждения, который заключается в том, что закрепляют корпус контролируемого полупроводникового прибора на радиаторе охлаждения через слой теплопроводящей пасты. Радиатор охлаждения размещают в нагретой жидкости, температура которой не более 75% от предельной температуры нагрева полупроводникового прибора, причем корпус полупроводникового прибора располагают выше уровня нагретой жидкости. Измеряют n значений напряжений термоЭДС между корпусом полупроводникового прибора и радиатором охлаждения, усиливают их, производят аналого-цифровое преобразование, сохраняют и определяют n значений температур корпуса полупроводникового прибора по формуле: где Е - измеренная термоЭДС в конце i временного интервала, Т - температура радиатора охлаждения, помещенного в нагретую жидкость, α - коэффициент Зеебека, i - текущий индекс, изменяется от 0 до n, i и n - натуральный ряд чисел, а затем среднее значение теплового сопротивления по формуле: , где С - теплоемкость корпуса полупроводникового прибора, t - время начала процесса нагрева корпуса полупроводникового прибора, t=(Δt⋅i) - временные интервалы в процессе нагрева корпуса полупроводникового прибора, Δt - значение временного интервала, Т - температура корпуса полупроводникового прибора перед началом измерения, Т - температура корпуса полупроводникового прибора в конце i временного интервала. Технический результат - повышение информативности получаемых данных измерений, так как способ позволяет измерять тепловое сопротивление между корпусом любого полупроводникового прибора и радиатором охлаждения после установки полупроводникового прибора на радиатор охлаждения, что дает информацию о наличии и качестве нанесения теплопроводящей пасты между полупроводниковым прибором и радиатором охлаждения без снятия радиатора охлаждения до введения полупроводникового прибора в эксплуатацию. 1 ил.

Изобретение относится к измерительной технике, а именно к неразрушающему контролю и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения.

Известен способ измерения теплового сопротивления термопаст [Измерение теплового сопротивления термопаст. Вы можете провести их сами. На страницах сайта www.electrosad.ru.], осуществляемый устройством, включающем в себя источник питания ~220 В, соединенный первым выводом с предохранителем, а вторым выводом с переключателем. Выход предохранителя соединен со входом лабораторного автотрансформатора, выход переключателя соединен со вторым входом лабораторного автотрансформатора. К выходу лабораторного автотрансформатора подключен вольтметр и, через последовательно соединенный амперметр, резистор. Резистор привинчен к радиатору охлаждения с устройством обдува через слой теплопроводящей пасты.

Измерение теплового сопротивления термопасты включает воздействие на резистор, привинченный к радиатору охлаждения через слой теплопроводящей пасты заданным напряжением, измерения тока резистора, измерения температуры корпуса резистора и температуры радиатора охлаждения вблизи контактной поверхности с помощью термопар. Далее определяют значение теплового сопротивления термопасты по формуле:

где tPO - температура радиатора охлаждения вблизи контактной поверхности;

tR1 - температура резистора;

U - приложенное на резистор напряжение;

I - измеренный ток резистора.

Этот способ не позволяет контролировать тепловое сопротивление между корпусом полупроводникового прибора и радиатором охлаждения, так как при подаче напряжения на полупроводниковый прибор температура корпуса полупроводникового прибора будет зависеть еще и от теплового сопротивления «переход-корпус».

Известен способ измерения теплового сопротивления переход-корпус полупроводникового прибора [RU 2529761 С1, МПК G01R 31/00 (2006.01), опубл. 27.09.2014], выбранный в качестве прототипа, включающий воздействие на контролируемый полупроводниковый прибор нагретой жидкостью с заданной температурой, определение зависимости выходного напряжения контролируемого полупроводникового прибора от температуры нагрева контролируемого полупроводникового прибора, определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора с учетом параметров теплоемкости контролируемого полупроводникового прибора, значений температур и времени нагрева между этими температурами контролируемого полупроводникового прибора. Причем воздействие нагретой жидкостью на контролируемый полупроводниковый прибор осуществляют посредством струи нагретой жидкости, фиксируя при этом n значений выходного напряжения контролируемого полупроводникового прибора через равные промежутки времени, фиксируя при этом время начала процесса и фиксируя время конца каждого последующего временного интервала нагрева контролируемого полупроводникового прибора. Определение зависимости выходного напряжения контролируемого полупроводникового прибора от температуры нагрева контролируемого полупроводникового прибора осуществляют по двум крайним температурам, соответствующим началу и концу процесса нагрева контролируемого полупроводникового прибора. На основе этой зависимости определяют температурный коэффициент напряжения контролируемого полупроводникового прибора, n значений выходного напряжения контролируемого полупроводникового прибора преобразуют в n значений температур в конце каждого временного интервала путем деления каждого измеренного выходного напряжения на температурный коэффициент напряжения. Определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора осуществляют n раз с учетом n временных интервалов времени нагрева полупроводникового прибора, n значений температур контролируемого полупроводникового прибора, определяемых в конце каждого временного интервала. Далее определяют среднее значение теплового сопротивления переход-корпус контролируемого полупроводникового прибора по формуле:

где С - теплоемкость контролируемого полупроводникового прибора,

t0 - время начала процесса нагрева контролируемого полупроводникового прибора,

ti=(Δt⋅i) - временные интервалы в процессе нагрева контролируемого полупроводникового прибора,

Δt - значение временного интервала,

Т0 - значения температуры контролируемого полупроводникового прибора перед началом измерения,

Ti - значения температуры контролируемого полупроводникового прибора в конце i временного интервала,

i - текущий индекс, изменяется от 0 до n,

i и n - натуральный ряд чисел.

Этот способ не позволяет контролировать тепловое сопротивление между корпусом полупроводникового прибора и радиатором охлаждения, так как выходное напряжение контролируемого полупроводникового прибора зависит не только от теплового сопротивления переход-корпус полупроводникового прибора, но и от качества нанесения теплопроводящей пасты между корпусом полупроводникового прибора и радиатором охлаждения.

Техническим результатом предложенного изобретения является измерение теплового сопротивления между корпусом полупроводникового прибора и радиатором охлаждения после установки полупроводникового прибора на радиатор охлаждения.

Способ измерения теплового сопротивления между корпусом полупроводникового прибора и радиатором охлаждения, также как в прототипе, включает воздействие нагретой жидкостью с заданной температурой, измерение n значений напряжений через равные промежутки времени и фиксацию времени начала процесса и времени конца каждого последующего временного интервала нагрева, определение теплового сопротивления n раз с учетом n временных интервалов времени нагрева, определение среднего значения теплового сопротивления.

Согласно изобретению закрепляют корпус контролируемого полупроводникового прибора на радиаторе охлаждения через слой теплопроводящей пасты. Радиатор охлаждения размещают в нагретой жидкости, температура которой не более 75% от предельной температуры нагрева полупроводникового прибора, причем корпус полупроводникового прибора располагают выше уровня нагретой жидкости. Измеряют n значений напряжений термоЭДС между корпусом полупроводникового прибора и радиатором охлаждения, усиливают их, производят аналого-цифровое преобразование, сохраняют и определяют n значений температур корпуса полупроводникового прибора по формуле:

где ЕЕЭДСi - измеренная термоЭДС в конце i временного интервала,

Tpo - температура радиатора охлаждения, помещенного в нагретую жидкость,

α - коэффициент Зеебека,

i - текущий индекс, изменяется от 0 до n,

i и n - натуральный ряд чисел, а затем среднее значение теплового сопротивления по формуле:

где С - теплоемкость корпуса полупроводникового прибора,

t0 - время начала процесса нагрева корпуса полупроводникового прибора,

ti=(Δt⋅i) - временные интервалы в процессе нагрева корпуса полупроводникового прибора,

Δt - значение временного интервала,

Т0 - температура корпуса полупроводникового прибора перед началом измерения,

ТПП i - температура корпуса полупроводникового прибора в конце i временного интервала.

Предложенный способ позволяет измерять тепловое сопротивление между корпусом любого полупроводникового прибора и радиатором охлаждения после установки полупроводникового прибора на радиатор охлаждения, что дает информацию о наличии и качестве нанесения теплопроводящей пасты между полупроводниковым прибором и радиатором охлаждения без снятия радиатора охлаждения до введения полупроводникового прибора в эксплуатацию.

На фиг. 1 представлено устройство, реализующее предлагаемый способ.

Предложенный способ измерения теплового сопротивления между корпусом полупроводникового прибора и радиатором охлаждения осуществлен с помощью устройства, содержащего микроконтроллер 1, микроконтроллер 1, соединенный с оптическим излучателем 2 и оптическим приемником 3. Персональный компьютер 4 соединен с микроконтроллером 1. К корпусу полупроводникового прибора 5 подключен первый вход усилителя 6, выход которого связан с входом аналого-цифрового преобразователя 7 (АЦП), который соединен с микроконтроллером 1. К радиатору охлаждения 8 через слой теплопроводящей пасты 9 привинчен корпус полупроводникового прибора 5. Радиатор охлаждения 8 размещен в емкости 10, наполненной диэлектрической жидкостью 11, так, что нижняя часть радиатора

охлаждения 8 погружена в диэлектрическую жидкость 11, а корпус полупроводникового прибора 5 расположен выше ее уровня. Радиатор охлаждения 8 соединен со вторым входом усилителя 6. Емкость 10 установлена на нагреватель 12. Оптический излучатель 2 и оптический приемник 3 прикреплены изнутри на противоположных стенках емкости 10 так, что они расположены выше уровня диэлектрической жидкости 11, а их оптические оси совпадают и направлены навстречу друг другу.

В качестве полупроводникового прибора 9 использовали транзистор КТ805. В качестве радиатора охлаждения 6 использовали радиатор SK29-25S. В качестве микроконтроллера 1 использовали микросхему Atmega 16 производства фирмы «ATMEL». Микроконтроллер 1 соединен с персональным компьютером 5 интерфейсом RS232 для передачи данных. В качестве оптического излучателя 2 был использован инфракрасный светодиод АЛ107Б. Оптический приемник 3 - фотодиод марки ФД265-01. В качестве диэлектрической жидкости 10 использована полиметилсилоксановая жидкость марки ПМС-5 по ГОСТ 13032-77 с изм. 1-3 [«Кремнийорганические продукты, выпускаемые в СССР», Каталог-справочник. М.: Химия, 1970. - С. 52). Использован усилитель 11 с малым напряжением смещения нуля и дрейфом нуля, например, ОР177, аналого-цифровой преобразователь 4 (АЦП) - с временем преобразования не более 1 мс и разрядностью не менее 12 бит, например, МАХ1270. Нагревателем 12 была лабораторная плитка ПЛ-01 с функцией стабилизации температуры, позволяющая вести нагрев до 300°С.

В начале с помощью нагревателя 12 нагрели диэлектрическую жидкость 11 до температуры 70°С, которая определялась как не более 75% от максимально допустимой температуры, обозначенной в технических условия полупроводникового прибора - транзистора КТ805. Затем, включив микроконтроллер 1, подавали импульсные сигналы на оптический излучатель 2. Сигналы с оптического излучателя 2 поступали на оптический приемник 3, что сигнализировало об отсутствии радиатора охлаждения 8 в жидкости 11 и неготовности устройства к работе.

Затем поместили радиатор охлаждения 8 с прикрепленным к нему через слой теплопроводящей пасты 9 корпусом полупроводникового прибора 5 в нагретую диэлектрическую жидкость 11. Сигналы с оптического излучателя 2 перестали поступать на оптический приемник 3, что сигнализировало о начале процесса измерения. Микроконтроллер 1 начал отсчет времени измерения. В результате нагрева радиатора охлаждения 8 между ним и корпусом полупроводникового прибора 5 возникла термоЭДС, которая поступала на усилитель 6, а затем на аналого-цифровой преобразователь 7 (АЦП). С выхода аналого-цифрового преобразователя 7 (АЦП) данные в цифровой форме поступали в микроконтроллер 1, который через заданные промежутки времени, передавал их в персональный компьютер 5. По мере передачи тепловой энергии от радиатора охлаждения 8 к корпусу полупроводникового прибора 5 происходило изменение термоЭДС. Микроконтроллер 1 фиксировал время окончания измерения, которое составило, 700 секунд, и с помощью программы определил температуру корпуса полупроводникового прибора 5 по формуле (1).

После расчета температуры корпуса полупроводникового прибора 5 в каждом временном интервале получили массив температур TППi, в котором каждому члену массива соответствует значение температуры корпуса полупроводникового прибора 5 в момент времени ti, причем время определялось по номеру члена массива. После преобразования полученный массив ТППi передавался из микроконтроллера 1 в компьютер 4 с помощью интерфейса RS232 и использовался для расчета теплового сопротивления между корпусом полупроводникового прибора 5 и радиатором охлаждения 8. Расчет теплового сопротивления производился в компьютере 4 в программе Microsoft Excel n раз с последующим вычислением средней величины по формуле (2).

Измеренное тепловое сопротивление между корпусом транзистора К805 и радиатором охлаждения SK29-25S с нанесенной тонким равномерным слоем теплопроводящей пастой КПТ-8 составило 0,061°С/Вт, с а без нанесения теплопроводящей пасты - 0,112°С/Вт.


СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 255.
04.04.2018
№218.016.3338

Композиционная одноупаковочная силикатная краска

Изобретение относится к составам для нанесения покрытий, а именно к композиционным силикатным краскам с органическими добавками, и может быть использовано в строительстве и быту для защиты и декоративной отделки фасадов, а также для внутренних работ в зданиях и помещениях. Композиционная...
Тип: Изобретение
Номер охранного документа: 0002645502
Дата охранного документа: 21.02.2018
29.05.2018
№218.016.598a

Способ синтеза нанодисперсного нитрида титана

Изобретение относится к физике низкотемпературной плазмы и плазмохимии, к электротехнике и электрофизике, а именно к ускорительной технике. Способ синтеза нанодисперсного нитрида титана осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с...
Тип: Изобретение
Номер охранного документа: 0002655365
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5b76

Устройство для утилизации тепла вытяжного воздуха

Изобретение относится к области кондиционирования воздуха, а именно к устройствам, в которых первичный кондиционированный воздух подается от одной центральной станции к распределительной точке в помещениях для вторичной обработки, и может быть использовано в жилых, общественных и...
Тип: Изобретение
Номер охранного документа: 0002655907
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c4c

Способ тушения пожаров

Изобретение относится к противопожарной технике, в частности к способам подавления и тушения возгораний на ограниченных площадях, и может быть использовано для локализации и ликвидации возгораний в жилых помещениях, а также на промышленных и общественных объектах. Способ заключается в подаче...
Тип: Изобретение
Номер охранного документа: 0002655909
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c98

Способ определения коэффициента турбулентной диффузии в приземном слое атмосферы

Изобретение относится к области метеорологии и может быть использовано для определения коэффициента турбулентной диффузии в приземном слое атмосферы. Сущность: измеряют объемную активность радона одновременно на двух высотах: 0,5-2 м от поверхности земли и не менее 10 м от поверхности земли. С...
Тип: Изобретение
Номер охранного документа: 0002656114
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5ca4

Способ определения расстояния до границ объекта

Способ определения расстояния до границ объекта включает измерение размера изображения в плоскости изображений оптического прибора со светочувствительной матрицей, осуществление перемещения прибора вдоль его линии визирования по направлению к объекту или от него на фиксированное расстояние,...
Тип: Изобретение
Номер охранного документа: 0002656130
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cb5

Способ вихретокового контроля толщины стенки металлических немагнитных труб

Изобретение относится к методам неразрушающего контроля немагнитных металлических изделий и может быть использовано для контроля толщины металлического изделия и толщины диэлектрического покрытия его поверхности. Сущность заявленного изобретения заключается в том, что способ вихретокового...
Тип: Изобретение
Номер охранного документа: 0002656115
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cc2

Устройство неразрушающего контроля неисправностей в электрической сети

Изобретение относится к области неразрушающего контроля и может быть использовано для предупреждения пожара при неисправности в электрической сети. Устройство неразрушающего контроля неисправностей в электрической сети содержит вводной щит, к которому через электрическую сеть и переходное...
Тип: Изобретение
Номер охранного документа: 0002656117
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cc8

Способ послойного анализа тонких пленок

Изобретение относится к исследованию материалов путем определения их физических свойств, а именно к определению элементного состава методом вторично-ионной масс-спектрометрии и может быть использовано для определения распределения материала тонкой пленки по глубине при изготовлении многослойных...
Тип: Изобретение
Номер охранного документа: 0002656129
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cd3

Способ определения интенсивности дождевых осадков в приземном слое атмосферы

Изобретение относится к способам контроля за состоянием и динамикой атмосферы, интегральных характеристик осадков, а именно к определению интенсивности дождевых осадков в приземном слое атмосферы по измеренной мощности дозы гамма-излучения. Способ определения интенсивности дождевых осадков в...
Тип: Изобретение
Номер охранного документа: 0002656118
Дата охранного документа: 31.05.2018
Показаны записи 31-40 из 40.
14.05.2019
№219.017.51e1

Способ контроля параметров вторичного источника бесперебойного питания

Изобретение относится к области измерения электрических величин, а именно к измерению токов и напряжений при испытаниях и проверке источников бесперебойного питания, и может быть использовано в испытательных стендах космических аппаратов. Способ заключается в том, что в процессе работы у...
Тип: Изобретение
Номер охранного документа: 0002687302
Дата охранного документа: 13.05.2019
29.05.2019
№219.017.6218

Устройство для контроля параметров вторичного источника бесперебойного питания

Использование: в области электротехники. Технический результат – обеспечение контроля электрических параметров источника в процессе его работы у потребителя. Устройство для контроля параметров вторичного источника бесперебойного питания содержит компьютер, подключенный к микроконтроллеру,...
Тип: Изобретение
Номер охранного документа: 0002689323
Дата охранного документа: 27.05.2019
19.06.2019
№219.017.8687

Фармацевтическая композиция для лечения ожогов (варианты) и способ ее получения (варианты)

Изобретение относится к медицине, а именно к фармацевтической композиции для лечения ожогов, включающая активное вещество N-(β-оксиэтил)-4,6-диметилдигидропиримидон-2 (ксимедон) и основообразующие средства, отличающееся тем, что в качестве основообразующих средств она содержит гелеобразователь,...
Тип: Изобретение
Номер охранного документа: 0002317811
Дата охранного документа: 27.02.2008
29.06.2019
№219.017.99c8

Способ очистки промышленных газовых выбросов

Изобретение относится к области нефтехимии, конкретно к очистке промышленных газовых выбросов, образующихся в процессе переработки оксидов алкиленов. Промышленные газовые выбросы, содержащие оксиды алкиленов и карбонильные соединения, охлаждают, после чего подвергают абсорбции водным раствором...
Тип: Изобретение
Номер охранного документа: 0002278148
Дата охранного документа: 20.06.2006
29.06.2019
№219.017.9aa7

Способ получения стирола жидкофазной дегидратацией метилфенилкарбинолсодержащего сырья (варианты)

Изобретение относится к нефтехимической и химической промышленности и предназначено для получения стирола жидкофазной дегидратацией метилфенилкарбонила. Варианты способа осуществляют жидкофазной дегидратацией метилфенилкарбинолсодержащего сырья в присутствии катализатора кислотного типа в...
Тип: Изобретение
Номер охранного документа: 0002296114
Дата охранного документа: 27.03.2007
22.10.2019
№219.017.d904

Комбинация противовирусных средств для лечения вирусной гриппозной пневмонии и ее применение

Изобретение относится к медицине, в частности к комбинации противовирусных средств для лечения вирусной гриппозной пневмонии, а также к применению комбинации риамиловира и осельтамивира. Комбинация противовирусных средств состоит из риамиловира (метилтионитрооксодигидротриазолотриазинид натрия)...
Тип: Изобретение
Номер охранного документа: 0002703535
Дата охранного документа: 21.10.2019
24.10.2019
№219.017.d954

Способ компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что осуществляют излучение и прием ультразвуковых волн на двух частотах с разными периодами, измерение временных интервалов между излученными и принятыми ультразвуковыми...
Тип: Изобретение
Номер охранного документа: 0002703834
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.d9ab

Устройство компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит блок управления и индикации, который соединен с первым и вторым генераторами. Первый...
Тип: Изобретение
Номер охранного документа: 0002703836
Дата охранного документа: 22.10.2019
21.04.2023
№223.018.501f

Способ компенсации погрешности измерения ультразвукового локатора

Использование: изобретение относится к ультразвуковым локационным измерителям уровня жидкости и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства. Сущность: способ компенсации погрешности...
Тип: Изобретение
Номер охранного документа: 0002748137
Дата охранного документа: 19.05.2021
26.05.2023
№223.018.7011

Способ предупреждения пожара из-за неисправности контактного соединения в электрической сети

Способ неразрушающего контроля неисправностей в электрической сети, включает соединение вводного щита с двумя электроустановками, измеряют ток каждой электроустановки, полученные данные о величине тока передают в микроконтроллер, измеряют термоЭДС при включении каждой электроустановки,...
Тип: Изобретение
Номер охранного документа: 0002796193
Дата охранного документа: 17.05.2023
+ добавить свой РИД