×
01.05.2019
219.017.47ca

Результат интеллектуальной деятельности: Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиационной технике, в частности к конструкциям плоских многофункциональных выходных устройств для трехконтурного газотурбинного двигателя изменяемого цикла. Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла содержит корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя. Сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные и нижнюю поперечную стенки, жестко связанные с дозвуковой частью, и верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов. Верхняя поворотная стенка сверхзвуковой части корпуса снабжена шевронами, расположенными на ее выходной кромке, запорный элемент верхнего дополнительного соплового канала выполнен в виде поворотной створки с приводом, шарнирно закрепленной на обечайке верхнего дополнительного соплового канала с возможностью постоянного взаимодействия с верхней поворотной стенкой. Запорный элемент нижнего дополнительного соплового канала выполнен в виде профилированного тела, установленного на внутренней поверхности обечайки нижнего дополнительного соплового канала с возможностью возвратно-поступательного перемещения в осевом направлении и имеющего выпуклую профилированную запорную поверхность, размещенную с возможностью взаимодействия со свободной кромкой нижней поперечной стенки сверхзвуковой части корпуса основного соплового канала. Изобретение позволяет сочетать понижение уровня шума основной струи плоского выходного устройства на взлетном малошумном режиме и низкие значения потерь тяги выходного устройства на сверхзвуковом крейсерском режиме. 1 з.п. ф-лы, 7 ил.

Изобретение относится к авиационной технике, в частности к конструкциям плоских многофункциональных выходных устройств для трехконтурного газотурбинного двигателя изменяемого цикла.

Известно плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла (US 7395657, 2005), содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя, причем сверхзвуковая часть корпуса основного соплового канала имеет верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов.

В известном выходном устройстве верхняя поворотная стенка и нижняя поворотная створки располагаются так, чтобы отклонять поток выхлопных газов в восходящем или нисходящем направлении и тем самым, блокировать прямую видимость через сопло горячих частей газотурбинного двигателя и маскировки инфракрасного излучения от выхлопных газов двигателя. При этом в известном выходном устройстве не решена проблема шумоглушения на взлетном режиме полета летательного аппарата. Кроме того, сопловой канал известного устройства обладает повышенным сопротивлением при работе на сверхзвуковом крейсерском режиме полета, что снижает значение коэффициента тяги выходного устройства.

Известно выходное устройство газотурбинного двигателя изменяемого цикла (US 6360528, 2002), содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием дополнительных сопловых каналов, причем сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные стенки, жестко связанные с дозвуковой частью, и верхнюю и нижнюю поперечные поворотные стенки с приводным механизмом, шарнирно закрепленные на кромках выходного сечения дозвуковой части корпуса, и имеющие шевроны, расположенные на их выходных кромках.

Шевроны на задней кромке поперечных поворотных стенок в известном устройстве предназначены для ускоренного смешения наружного воздуха с потоком выхлопных газов, что снижает уровень слышимого шума струи. Недостатком известного выходного устройства является то, что шевронные кромки поперечных поворотных стенок работают в постоянном режиме независимо от режима работы двигателя и условий полета летательного аппарата. Это снижает эффективность работы двигателя на максимальных сверхзвуковых режимах его работы за счет уменьшения коэффициента тяги выходного устройства двигателя.

Наиболее близким аналогом изобретения является плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла (US 20160326982, 2016), содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя, причем сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные и нижнюю поперечную стенки, жестко связанные с дозвуковой частью, и верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов.

В известном выходном устройстве обеспечивается возможность регулирования в процессе работы двигателя величины площади проходного сечения как основного соплового канала, так и дополнительных сопловых каналов, что позволяет оптимизировать тяговые характеристики сопловых каналов выходного устройства на различных режимах работы трехконтурного газотурбинного двигателя. При этом в известном выходном устройстве не решена проблема шумоглушения, т.к. шумовые характеристики выходного устройства на всех режимах работы двигателя, в частности, на взлетном режиме его работы, будут превышать действующие нормативные показатели.

Технической проблемой, решение которой обеспечивается изобретением, является снижение шумовых характеристик выходного устройства на взлетном режиме работы двигателя.

Технический результат изобретения заключается в интенсификации смешения выхлопной реактивной струи с потоком воздуха третьего контура двигателя на взлетном режиме его работы при сохранении эффективных и тяговых характеристик на сверхзвуковом крейсерском режиме.

Технический результат достигается за счет того, что плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла, содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя, причем сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные и нижнюю поперечную стенки, жестко связанные с дозвуковой частью, и верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов. Верхняя поворотная стенка сверхзвуковой части корпуса снабжена шевронами, расположенными на ее выходной кромке, запорный элемент верхнего дополнительного соплового канала выполнен в виде поворотной створки с приводом, шарнирно закрепленной на обечайке верхнего дополнительного соплового канала с возможностью постоянного взаимодействия с верхней поворотной стенкой, а запорный элемент нижнего дополнительного соплового канала выполнен в виде профилированного тела, установленного на внутренней поверхности обечайки нижнего дополнительного соплового канала с возможностью возвратно-поступательного перемещения в осевом направлении и имеющего выпуклую профилированную запорную поверхность, размещенную с возможностью взаимодействия со свободной кромкой нижней поперечной стенки сверхзвуковой части корпуса основного соплового канала.

Приводной механизм верхней поворотной стенки сверхзвуковой части корпуса и привод поворотной створки могут быть синхронизированы между собой.

Существенность отличительных признаков плоского выходного устройства подтверждается тем, что только совокупность всех конструктивных признаков, описывающая изобретение, позволяет обеспечить достижение технического результата изобретения - интенсификацию смешения выхлопной реактивной струи с потоком воздуха третьего контура двигателя на взлетном режиме его работы при сохранении эффективных и тяговых характеристик на сверхзвуковом крейсерском режиме.

Пример выполнения плоского выходного устройства трехконтурного газотурбинного двигателя изменяемого цикла показан на чертежах, где:

на фиг. 1 изображен общий вид трехконтурного газотурбинного двигателя с плоским выходным устройством;

на фиг. 2 показано плоское выходное устройство, продольный разрез;

на фиг. 3 - поперечное сечение А-А плоского выходного устройства на фиг. 2;

на фиг. 4 - общий вид плоского выходного устройства при работе двигателя на взлетном малошумном режиме;

на фиг. 5 - положение верхней поворотной стенки сверхзвуковой части корпуса и поворотной створки верхнего дополнительного соплового канала при работе двигателя на взлетном малошумном режиме;

на фиг. 6 - общий вид плоского выходного устройства при работе двигателя на сверхзвуковом крейсерском режиме;

на фиг. 7 - положение верхней поворотной стенки сверхзвуковой части корпуса и поворотной створки верхнего дополнительного соплового канала при работе двигателя на сверхзвуковом крейсерском режиме.

Трехконтурный газотурбинный двигатель изменяемого цикла, представленный на фиг.1, содержит двухканальный воздухозаборник 1, двухъярусный вентилятор 2, канал первого контура 3, канал второго контура 4, канал третьего контура 5, газогенератор 6 и плоское выходное устройство 7.

Плоское выходное устройство 7 содержит корпус 8 основного соплового канала 9, состоящий из дозвуковой части 10, сужающейся в поперечном сечении полости корпуса 8, и сверхзвуковой части 11 с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса 8. Дозвуковая часть 10 корпуса 8 сообщена входным сечением с каналами 3 и 4 первого и второго контура, а выходным сечением А-А, имеющим прямоугольную форму (см. фиг. 1-3), состыкована со сверхзвуковой частью 11.

Сверхзвуковая часть 11 корпуса 8 основного соплового канала 9 имеет две вертикальные стенки 12, нижнюю поперечную стенку 13, жестко связанные с дозвуковой частью 10, и верхнюю поворотную стенку 14 с приводным механизмом 15, шарнирно закрепленную на верхней кромке 16 выходного сечения дозвуковой части 10 корпуса 8. Верхняя поворотная стенка 14 сверхзвуковой части 11 корпуса 8 снабжена шевронами 17 (см. фиг. 4), расположенными на ее выходной кромке. Размеры, количество и угол установки шевронов 17 относительно плоскости верхней поворотной стенки 14 выбираются исходя из условия обеспечения минимального уровня шума струи основного соплового канала 9.

На корпусе 8 основного соплового канала 9 закреплены две обечайки 18 и 19 с образованием верхнего дополнительного соплового канала 20 и нижнего дополнительного соплового канала 21, сообщенных с каналом третьего контура 5. Обечайка 18 верхнего дополнительного соплового канала 20 имеет подвижно установленный запорный элемент для регулирования площади проходного сечения этого канала, выполненный в виде поворотной створки 22 с приводом 23. Поворотная створка 22 шарнирно закреплена на обечайке 18 верхнего дополнительного соплового канала 20 с возможностью постоянного взаимодействия с верхней поворотной стенкой 14.

Дозвуковая часть 10 основного соплового канала 9 выполнена с нерегулируемой площадью критического сечения, что существенно повышает коэффициент тяги выходного устройства за счет устранения утечек в подвижных соединениях в зоне с большим перепадом давления, обеспечивая низкий удельный расход топлива при полете на сверхзвуковом крейсерском режиме. Изменение режима работы двигателя сопровождается изменением площади верхнего и нижнего дополнительных сопловых каналов 20 и 21.

Обечайка 19 нижнего дополнительного соплового канала 21 имеет подвижно установленный запорный элемент, выполненный в виде профилированного тела 24 с приводом 25, установленного на внутренней поверхности обечайки 19 с возможностью возвратно-поступательного перемещения в осевом направлении и имеющего выпуклую профилированную запорную поверхность 26, размещенную с возможностью взаимодействия со свободной кромкой нижней поперечной стенки 13 сверхзвуковой части 11 корпуса 8 основного соплового канала 9.

Приводной механизм 15 верхней поворотной стенки 14 сверхзвуковой части 11 корпуса 8 и привод 23 поворотной створки 22 синхронизированы между собой.

Плоское выходное устройство 7 работает следующим образом. Внутренний контур рассматриваемого двигателя работает по схеме двухконтурного двигателя со смешением потоков. Поток сжатого воздуха А из внутреннего канала двухканального воздухозаборника 1 поступает во внутренний каскад двухъярусного вентилятора 2, далее соответствующие потоки сжатого воздуха В и С поступают в канал первого контура 3 и канал второго контура 4 двигателя, соответственно. Поток сжатого воздуха В из канала первого контура 3 поступает на вход газогенератора 6, на выходе из которого смешивается с потоком воздуха С из канала второго контура 4 и поступает в дозвуковую часть 10 основного соплового канала 9 плоского выходного устройства 7.

Поток сжатого воздуха D из каскада верхнего яруса двухъярусного вентилятора 2 поступает в канал третьего контура 5, имеющий переходный участок (на чертеже не показан), в котором этот канал кольцевого сечения преобразуется в два плоских прямоугольных канала - верхний дополнительный сопловой канал 20 и нижний дополнительный сопловой канал 21. Поток сжатого воздуха D из канала третьего контура 5 на взлетном режиме используется для организации газодинамического акустического экрана основной струи. Проведенные расчетные и экспериментальные исследования показали, что оптимальное значение степени расширения в сопле третьего контура, соответствующее максимальному снижению уровня шума основной струи составляет примерно 1,3. Количество воздуха третьего контура, потребное для эффективного снижения шума струи основного контура составляет 10-20% от объема воздуха основного соплового канала 9.

При изменении режима работы двигателя изменяется общая площадь верхнего и нижнего дополнительных сопловых каналов 20 и 21. Потребные значения общей площади каналов 20 и 21 достигаются за счет осевого перемещения профилированного тела 24 - левая крайняя его позиция соответствует взлетному малошумному режиму с максимальным значением общей площади каналов 20 и 21, а правая крайняя его позиция соответствует крейсерскому сверхзвуковому режиму с минимальным значением общей площади каналов 20 и 21.

На взлетном малошумном режиме работы двигателя профилированное тело 24 (фиг. 4) перемещается в крайнее левое положение, образуя канал для потока воздуха D, являющийся соплом третьего контура, которое образуется между профилированной запорной поверхностью 26 и поверхностью нижней поперечной стенки 13. Весь поток воздуха D третьего контура, поступающий в нижний дополнительный сопловой канал 21, служит для организации акустического экрана струи основного соплового канала 9 по его нижней поверхности.

При работе двигателя на этом режиме верхний дополнительный сопловой канал 20 полностью перекрыт.Взаимное расположение поворотных осей верхней поворотной стенки 14 и поворотной створки 22 выбираются таким образом, чтобы обеспечить присутствие шевронов 17 в потоке F основного соплового канала 9 на взлетном малошумном режиме (фиг. 5). Шевроны 17, расположенные на выходной кромке верхней поворотной стенки 14, выходят за пределы поворотной створки 22 и обеспечивают смешение потока F основного соплового канала 9 с воздухом окружающей среды G для улучшения акустических характеристик выходного устройства на этом режиме.

На сверхзвуковом крейсерском режиме работы двигателя канал третьего контура 5 в основном используется для перепуска пристеночного слоя воздуха из двухканального воздухозаборника 1 в верхний дополнительный сопловой канал 20, снижая тем самым потери полного давления и неравномерность потока на входе в вентилятор 2 и донное сопротивление основного соплового канала 9. Регулируемые элементы наружного каскада двухъярусного вентилятора 2 устанавливаются в положение, обеспечивающие минимальный расход потока воздуха D через канал третьего контура 5 и минимальную степень повышения давления наружного каскада двухъярусного вентилятора 2. В этом случае двигатель работает по схеме близкой к схеме двухконтурного двигателя со смешением потоков, обеспечивая минимальный крейсерский удельный расход топлива.

На сверхзвуковом крейсерском режиме работы двигателя профилированное тело 24 (фиг. 6) перемещается крайнее правое положение, перекрывая нижний дополнительный сопловой канал 21. Взаимное расположение поворотных осей верхней поворотной стенки 14 и поворотной створки 22 выбираются таким образом, чтобы обеспечить отсутствие шевронов 17 в потоке F основного соплового канала 9 на сверхзвуковом крейсерском режиме работы двигателя. При этом шевроны 17 касаются внутренней поверхности поворотной створки 22, образуя щелевидные отверстия 27 (фиг. 7).

Поток воздуха D из верхнего дополнительного соплового канала 20 пропускается через щелевидные отверстия 27, снижая донное сопротивление выходного устройства, обеспечивая при этом канализацию пристеночного слоя воздуха из воздухозаборника и продувку воздухом третьего контура для охлаждения элементов конструкции.

Такое решение позволяет сочетать понижение уровня шума основной струи плоского выходного устройства за счет присутствия шевронов в потоке основного соплового канала на взлетном малошумном режиме и низкие значения потерь тяги выходного устройства на сверхзвуковом крейсерском режиме за счет отсутствия шевронов в потоке основного соплового канала.


Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла
Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла
Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла
Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла
Источник поступления информации: Роспатент

Показаны записи 141-150 из 204.
20.03.2019
№219.016.e56c

Способ определения диагностических параметров разряда емкостных систем зажигания

Изобретение относится к области измерительной техники, а именно к методам диагностики параметров разрядов, генерируемых емкостными системами зажигания, применяемыми в авиационных двигателях и им подобных объектах. Способ определения диагностических параметров разряда емкостных систем зажигания,...
Тип: Изобретение
Номер охранного документа: 0002394170
Дата охранного документа: 10.07.2010
20.03.2019
№219.016.e56f

Генератор высокоэнтальпийного потока воздуха и способ его работы

Генератор и способ предназначены для получения воздушного потока с заданными параметрами при стендовых испытаниях и может быть использовано для нагрева текучих сред, в частности в аэродинамических трубах. Генератор содержит камеру сгорания и системы подачи окислителя и горючего, которые...
Тип: Изобретение
Номер охранного документа: 0002395795
Дата охранного документа: 27.07.2010
20.03.2019
№219.016.e675

Стенд для аэродинамических и акустических исследований вентиляторов двухконтурных турбореактивных двигателей (трдд)

Изобретение относится к области испытательной техники, предназначенной для экспериментальных исследований биротативных и однорядных вентиляторов авиационных двигателей и двигателей других летательных аппаратов, например наземных и надводных летательных аппаратов на воздушной подушке и других....
Тип: Изобретение
Номер охранного документа: 0002337342
Дата охранного документа: 27.10.2008
20.03.2019
№219.016.e7a3

Стенд для высотных испытаний двухконтурных турбореактивных двигателей

Изобретение относится к области испытания турбореактивных двигателей на стенде в условиях, близких к полетным. Стенд для высотных испытаний двухконтурных турбореактивных двигателей содержит шахту всасывания и трубопровод подвода осушенного и охлажденного воздуха с регулируемым дросселем,...
Тип: Изобретение
Номер охранного документа: 0002426087
Дата охранного документа: 10.08.2011
20.03.2019
№219.016.e86e

Способ диагностики вида аэроупругих колебаний лопаток рабочего колеса осевой турбомашины

Изобретение предназначено для использования в энергомашиностроении и позволяет решать задачи повышения надежности и сокращения времени диагностики вида аэроупругих колебаний в потоке на рабочих режимах лопаток рабочего колеса осевой турбомашины. Указанный технический результат достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002451922
Дата охранного документа: 27.05.2012
20.03.2019
№219.016.e8a3

Термосиловая охлаждаемая конструкция стенки элемента высокотемпературного воздушно-газового тракта

Изобретение относится к конструкциям охлаждаемых силовых стенок различных машин и аппаратов, подвергающихся значительным тепловым нагрузкам, а именно к конструкциям стенок высокотемпературных воздушно-газовых трактов воздушно-реактивных двигателей, ЖРД, тепловых реакторов, различного типа...
Тип: Изобретение
Номер охранного документа: 0002403491
Дата охранного документа: 10.11.2010
23.03.2019
№219.016.ec7e

Полый диск ротора турбины и способ его изготовления

Изобретение относится к изготовлению полых дисков роторов турбин газотурбинных двигателей. Полый диск ротора турбины изготавливают в виде единой детали методом трехмерной печати, содержащей ступицу, полотно, включающее две стенки, образующие полость, и обод. Диск содержит два дисковых элемента,...
Тип: Изобретение
Номер охранного документа: 0002682734
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.f1a2

Способ диагностики и прогнозирования надежности газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области надежности газотурбинной техники, а именно для повышения эффективности и оперативности диагностики технического состояния и прогнозирования надежности газотурбинных двигателей в процессе их испытаний и эксплуатации. Технический результат достигается тем, что за...
Тип: Изобретение
Номер охранного документа: 0002310180
Дата охранного документа: 10.11.2007
10.04.2019
№219.017.022c

Способ распыливания жидкого углеводородного топлива и форсунка для распыливания

Способ распыливания жидкого углеводородного топлива в потоке воздуха, сжатого в компрессоре газотурбинного двигателя или газотурбинной установки, проходящего через форсунку, на вход которой поступает поток топлива с низким напором, характеризующийся тем, что поступающий поток топлива разделяют...
Тип: Изобретение
Номер охранного документа: 0002348823
Дата охранного документа: 10.03.2009
10.04.2019
№219.017.047b

Центробежно-пневматическая форсунка

Центробежно-пневматическая форсунка предназначена для работы в камерах сгорания наземных газотурбинных установок и реактивных двигателей. Центробежно-пневматическая форсунка содержит полый корпус воздушного канала с участком сужения, снабженный лопаточным завихрителем воздуха на входе,...
Тип: Изобретение
Номер охранного документа: 0002374561
Дата охранного документа: 27.11.2009
Показаны записи 1-4 из 4.
25.08.2017
№217.015.b941

Шевронное сопло газотурбинного двигателя

Изобретение относится к области двигателестроения, в частности к реактивным соплам с устройствами подавления шума, и предназначено для использования в авиационных двигателях. Шевронное сопло газотурбинного двигателя включает выхлопную трубу, а также сопла наружного и внутреннего контуров,...
Тип: Изобретение
Номер охранного документа: 0002615309
Дата охранного документа: 04.04.2017
10.05.2018
№218.016.4a73

Устройство для сортировки древесных материалов по смолистости

Изобретение относится к разделению древесных материалов в электростатическом поле по смолистости и может быть использовано в деревоперерабатывающей промышленности для разделения технологической щепы на фракции с различным содержанием канифоли. Между электродами сепаратора создается неоднородное...
Тип: Изобретение
Номер охранного документа: 0002651715
Дата охранного документа: 23.04.2018
15.03.2019
№219.016.e076

Сверхзвуковой самолет (варианты)

Изобретение относится к административным самолетам большой дальности. Сверхзвуковой самолет содержит фюзеляж, стреловидное крыло, вертикальное оперение, шасси и силовую установку, состоящую из двигателей, сверхзвуковых воздухозаборников и сопел. Передняя часть фюзеляжа выполнена с уплощенным...
Тип: Изобретение
Номер охранного документа: 0002391254
Дата охранного документа: 10.06.2010
19.06.2019
№219.017.868e

Шумоглушащее сопло воздушно-реактивного двигателя (варианты)

Изобретение относится к области авиации, в частности к соплам летательных аппаратов с устройствами для снижения шума струи воздушно-реактивного двигателя. Предложено три варианта шумоглушащего сопла. В первом варианте канал сужающегося плоского сопла воздушно-реактивного двигателя с вырезами на...
Тип: Изобретение
Номер охранного документа: 0002313680
Дата охранного документа: 27.12.2007
+ добавить свой РИД