×
29.04.2019
219.017.443b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЧИСТОГО НАНОДИСПЕРСНОГО ПОРОШКА ДИОКСИДА ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения нанодисперсных материалов и может использоваться в химической промышленности, электронике, порошковой металлургии. Способ включает смешивание чистого раствора прекурсора со спиртами, поддерживающими горение, распыление и сжигание смеси в пламени, при этом в качестве чистого раствора прекурсора используют чистый подкисленный водный раствор тетрахлорида титана, а содержание спирта в распыляемой смеси составляет не менее 80% (вес.), воды - не более 15% (вес.). Размер капель распыляемой смеси составляет не более 2 мкм. Предлагаемый способ позволяет получать чистые порошки нанодисперсного диоксида титана (не содержащие примесей углерода и с низким содержанием 0,01-0,03% хлорид-иона) с размером частиц менее 100 нм и более высокой химической и каталитической активностью. 1 табл., 12 пр.

Изобретение относится к технологии получения нанодисперсных материалов и может использоваться в химической промышленности, электронике, порошковой металлургии для получения ультра- и нанодисперсного диоксида титана с высокой удельной поверхностью, химической и каталитической активностью, получения керамических материалов.

Известен способ получения нанодисперсных порошков оксидов металлов, в том числе диоксида титана, путем смешения нанопорошков оксидов металлов и адгезивного вещества в массовом соотношении (95-98):(5-2), добавления дистиллированной воды для получения суспензии, распыления суспензии при температуре 100-130°С в пламени горелки или плазменного распыления (при температуре выше 4000°С) для образования микронных агрегированных частиц, плазменного спекания полученных частиц для образования плотного порошка с гранулами 40-90 мкм и нанокристаллической структурой (патент CN 1637080 (A), B05D 1/08; C09D 1/00. UNIV WUHAN ТЕСН [CN] / CN 20041061306 20041209/2005-07-13).

Недостатком способа являются высокие энергозатраты, связанные с поддержанием высоких температур на плазменное распыление и спекание частиц порошка.

Известен способ получения нанодисперсных порошков оксидов металлов, в том числе диоксида титана, в котором для получения полых наношариков оксидов металлов водный раствор прекурсора наноматериала смешивают с органическим растворителем, поддерживающим горение, далее полученную смесь распыляют и сжигают на воздухе в различных точках пламени, что позволяет получить шарики, полые сферы, многогранники и одноразмерные нанотрубки (патент CN 101234751 (А), С01В 13/14, B22F 9/30, C01F 17/00, C01G 23/00. CHINESE ACAD INST CHEMISTRY [CN]/2008-08-06).

Недостатком способа является загрязнение частиц порошка примесями углерода, что снижает качество порошка - оксида металла.

Известен также способ получения чистых нанодисперсных порошков оксидов металлов, в том числе диоксида титана (патент США №5958361, C01G 23/047, C01F 7/02, C01F 1/00. Regents of the University of Michigan, Ann Arbor, Mich. от 28.09.1999 г.), в котором процесс приготовления ультратонких частиц оксидов металлов или их смесей с размером 2-500 нм включает:

a) распыление раствора прекурсора керамики, включающего один или более гликоль-полиметаллоксан в подходящем органическом растворителе или в поддерживающей горение смеси растворителей, причем указанный гликоль-полиметаллоксан присутствует в растворителе в количестве от 1 до 30% (вес.) в растворе прекурсора, гликоль-полиметаллоксан имеет избыток до 90% от содержания оксида металла, чтобы сформировать аэрозоль раствора прекурсора керамики, содержащего в себе капли раствора прекурсора;

b) обеспечение кислородом указанного раствора керамического прекурсора в количестве не менее стехиометрического соотношения к сжигаемому материалу, содержащемуся в растворе керамического прекурсора, чтобы сформировать аэрозоль и кислородную смесь;

c) зажигание указанного аэрозоля кислородной смеси и получение керамических частиц оксида металла или смеси оксидов и газового потока, содержащего продукты сгорания;

d) отделение указанных керамических оксидов металлов или смеси оксидов металлов от газового потока, чтобы извлечь ультратонкие частицы продукта.

В этом способе заявлено, что не менее одного из указанных гликоль-полиметаллоксанов готовят путем варки одного или более оксидов металлов с гликолятсодержащей средой. Причем эта операция производится в триэтаноламине и этиленгликоле в течение 4-8 часов при повышенной температуре (200°С), без или с добавкой этилового спирта.

Недостатком способа является высокая трудоемкость, длительность и стоимость приготовления прекурсоров.

Признаки прототипа, которые совпадают с существенными признаками заявляемого изобретения, - смешивание чистого раствора прекурсора со спиртами, поддерживающими горение, распыление и сжигание смеси в пламени.

Задачей изобретения является снижение трудоемкости, длительности и стоимости процесса получения чистого нанодисперсного порошка диоксида титана.

Поставленная задача была решена за счет того, что в известном способе получения чистого нанодисперсного порошка диоксида титана, включающем смешивание чистого водного раствора прекурсора со спиртами, поддерживающими горение, распыление и сжигание смеси в пламени, в качестве прекурсора используют чистый подкисленный водный раствор тетрахлорида титана. Для достижения цели получения нанодисперсного диоксида титана с минимальными затратами содержание спирта в распыляемой смеси должно составлять не менее 80% (вес.), а содержание воды в распыляемой смеси составляет не более 15% (вес.). При этом размер капель распыляемой смеси не должен превышать 2 мкм.

Использование в качестве прекурсора чистого подкисленного водного раствора тетрахлорида титана позволяет снизить трудоемкость, длительность и стоимость процесса получения чистого нанодисперсного порошка диоксида титана, поскольку сложная и дорогостоящая стадия приготовления прекурсоров в виде гликолятов металлов заменяется простой и малоэнергоемкой стадией приготовления прекурсора в виде чистого подкисленного водного раствора тетрахлорида титана.

Неподкисленный раствор прекурсора приводит к увеличению конечных размеров частиц диоксида титана за счет ускоренного роста частиц на зародышах, образующихся при гидролизе прекурсора тетрахлорида титана.

Содержание органического реагента в распыляемой смеси должно составлять не менее 80% (вес.), поскольку именно такое количество реагента поддерживает горение и создает благоприятные условия для получения ультра и нанодисперсных частиц продукта, а также позволяет проводить процесс в автотермичном режиме.

Содержание воды в распыляемой смеси не должно превышать 15% (вес.). Такое содержание воды позволяет эффективно проводить процесс сжигания смеси в пламени, сопровождаемый термогидролизом тетрахлорида титана. Если содержание воды будет больше, чем 15% (вес.), то температура процесса будет уменьшаться. При этом фрагменты частиц могут расщепляться не полностью, что приводит к загрязнению продукта примесями неполного разложения прекурсора.

Размер распыляемых микрокапель должен составлять не более 2 мкм. Если размер распыляемых капель раствора прекурсора будет больше 2 мкм, то образуются крупные частицы продукта, превышающие 100 нм.

Примеры осуществления способа.

В приведенных ниже примерах №1-12 (таблица 1) получение нанодисперсного порошка оксида титана производили путем смешивания чистого подкисленного водного раствора прекурсора TiCl4 с чистым органическим реагентом, поддерживающим горение, с последующим распылением раствора через специальную форсунку до заданного размера капель и сжиганием смеси на воздухе в токе пламени. Анализ размеров частиц и примесей в порошке оксида металла производили на электронном сканирующем микроскопе «S-3400N» фирмы «Хитачи» с приставкой для рентгеноспектрального анализа фирмы «Брукер».

Пример 1. Для получения нанодисперсного порошка TiO2 был использован чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя бутанола-1 исходя из соотношения V(бутанола-1):V(р-ра TiCl4)=10:1. Размер микрокапель распыляемой смеси составил не более 2 мкм. При этом содержание примеси хлорид-иона в порошке TiO2 составило 0,01% (вес.), а примесь углерода отсутствовала. Размер частиц TiO2 составил менее 100 нм.

Пример 2. Для получения нанодисперсного порошка TiO2 аналогично примеру 1 был использован чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя бутанола-1 исходя из соотношения V(бутанола-1):V(p-pa TiCl4)=5:1 (таблица 1). Размер микрокапель распыляемой смеси составил не более 2 мкм. При этом получили порошок диоксида титана, содержащий 0,05% примеси хлорид-иона и примесь углерода. Размер частиц TiO2 составил до 500 нм.

Пример 3. Для получения нанодисперсного порошка TiO2 аналогично примеру 1 был использован чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя бутанола-1 исходя из соотношения V(бутанола-1):V(p-pa TiCl4)=3:1 (таблица 1). Размер микрокапель распыляемой смеси составил не более 2 мкм. При этом получили порошок диоксида титана, содержащий 0,02% примеси хлорид-иона и примесь углерода. Размер частиц диоксида титана составил до 1000 нм.

Пример 4. Процесс проводили аналогично примеру 1, с тем отличием, что размер микрокапель распыляемой смеси составил более 2 мкм. При этом содержание примеси хлорид-иона в порошке TiO2 составило 0,01% (вес.), а примесь углерода отсутствовала. Размер частиц TiO2 составил более 200 нм.

Пример 5. Для получения нанодисперсного порошка TiO2 аналогично примеру 1 был использован чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя изопропанола исходя из соотношения V(изопропанола):V(р-ра TiCl4)=10:1 (таблица 1). При этом содержание примеси хлорид-иона в порошке TiO2 составило 0,03% (вес.), а примесь углерода отсутствовала. Размер частиц TiO2 составил менее 100 нм.

Пример 6. Для получения нанодисперсного порошка TiO2 аналогично примеру 1 был использован чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя изопропанола исходя из соотношения V(изопропанола):V(р-ра TiCl4)=5:1 (таблица 1). При этом получили порошок диоксида титана, содержащий 0,58% примеси хлорид-иона и примесь углерода. Размер частиц TiO2 составил до 500 нм.

Пример 7. Для получения нанодисперсного порошка TiO2 аналогично примеру 1 был чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя изопропанола, исходя из соотношения V(изопропанола):V(р-ра TiCl4)=3:1 (таблица 1). При этом получили порошок диоксида титана, содержащий 1,34% примеси хлорид-иона и примесь углерода. Размер частиц TiO2 составил до 1000 нм.

Пример 8. Процесс проводили аналогично примеру 5, с тем отличием, что размер микрокапель распыляемой смеси составил более 2 мкм. При этом содержание примеси хлорид-иона в порошке TiO2 составило 0,03% (вес.), а примесь углерода отсутствовала. Размер частиц TiO2 составил более 500 нм.

Пример 9. Для получения нанодисперсного порошка TiO2 аналогично примеру 1 был использован чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя этанола исходя из соотношения V(этанол):V(р-ра TiCl4)=10:1 (таблица 1). При этом получили порошок диоксида титана, содержащий 1,20% примеси хлорид-иона, примесь углерода отсутсвовала. Размер частиц TiO2 составил до 700 нм.

Пример 10. Для получения нанодисперсного порошка TiO2 аналогично примеру 1 был использован чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя этанола исходя из соотношения V(этанол):V(р-ра TiCl4)=5:1 (таблица 1). При этом получили порошок диоксида титана, содержащий 4,50% примеси хлорид-иона, примесь углерода отсутствовала. Размер частиц TiO2 составил до 1000 нм.

Пример 11. Для получения нанодисперсного порошка TiO2 аналогично примеру 1 был использован чистый подкисленный водный раствор TiCl4 с концентрацией 2,2 моль/л, к которому добавляли необходимый объем органического растворителя этанола исходя из соотношения V(этанол):V(р-ра TiCl4)=3:1 (таблица 1). При этом получили порошок диоксида титана, содержащий 1,30% примеси хлорид-иона, примесь углерода отсутствовала. Размер частиц TiO2 составил до 5000 нм.

Пример 12.

Процесс проводили аналогично примеру 8, с тем отличием, что размер микрокапель распыляемой смеси составил более 2 мкм. При этом содержание примеси хлорид-иона в порошке TiO2 составило 1,20% (вес.), а примесь углерода отсутствовала. Размер частиц TiO2 составил более 700 нм.

Из анализа данных таблицы следует, что только при сжигании спиртов изопропанола и бутанола в примерах №1 и №5 образуются нанодисперсные порошки диоксида титана с размером частиц менее 100 нм. При этом процесс приготовления прекурсора и раствора для распыления (в отличие от прототипа) осуществляется простой операцией смешивания чистого подкисленного водного раствора тетрахлорида титана с чистым спиртом, поддерживающим горение.

Таким образом, проведение процесса по заявляемому способу (примеры №1 и №5) с использованием в качестве прекурсоров чистого подкисленного водного раствора тетрахлорида титана с содержанием спирта в распыляемой смеси не менее 80% (вес.) и воды не более 15% (вес.), с размером капель распыляемой смеси менее 2 мкм позволяет получить чистые порошки нанодисперсного диоксида титана (не содержащие примесей углерода и имеющие низкое содержание 0,01-0,03% хлорид-иона) с размером частиц менее 100 нм. Проведение процесса по заявляемому способу позволяет снизить трудоемкость, длительность и стоимость процесса приготовления прекурсоров и всего процесса в целом.

Источник поступления информации: Роспатент

Показаны записи 21-25 из 25.
24.05.2019
№219.017.6035

Способ выявления структуры графита

Изобретение относится к области материаловедения и может быть использовано при исследовании структурного состояния графита в сплавах, например сером чугуне, и полимерных композициях, содержащих графит, например в графитопластах, содержащих терморасширенный графит. Исследуемую поверхность...
Тип: Изобретение
Номер охранного документа: 0002471166
Дата охранного документа: 27.12.2012
08.06.2019
№219.017.75f1

Способ изготовления изделий из углерод-карбидокремниевого материала

Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химической, нефтехимической и химико-металлургической отраслях промышленности, а также в авиатехнике. Изготавливают заготовку из...
Тип: Изобретение
Номер охранного документа: 0002469950
Дата охранного документа: 20.12.2012
09.06.2019
№219.017.79b4

Способ определения опоры воздушной линии электропередачи с однофазным замыканием и неисправностью заземления

Изобретение относится к электроэнергетике и может быть использовано в распределительных сетях напряжением 6-35 кВ с изолированной или компенсированной нейтралью. Технический результат: повышение достоверности определения опоры ЛЭП с повреждением изоляции и возникающими при этом однофазными...
Тип: Изобретение
Номер охранного документа: 0002394249
Дата охранного документа: 10.07.2010
09.06.2019
№219.017.7a0e

Способ делигнификации целлюлозы

Способ касается делигнификации целлюлозы и может быть использован в целлюлозно-бумажной промышленности. Способ делигнификации целлюлозы включает щелочную обработку, делигнификацию пероксидом водорода с добавлением гидроксида натрия и силиката натрия, кислотную обработку. Щелочную обработку...
Тип: Изобретение
Номер охранного документа: 0002315831
Дата охранного документа: 27.01.2008
09.06.2019
№219.017.7b6b

Устройство для определения коэффициента сцепления колеса транспортного средства с дорожным и аэродромным покрытием

Изобретение относится к устройствам для оперативного контроля коэффициента сцепления колеса с сооружаемыми и эксплуатируемыми дорогами с твердым покрытием и может быть использовано при расследовании дорожно-транспортных происшествий и нештатных ситуаций приземления воздушных судов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002379408
Дата охранного документа: 20.01.2010
Показаны записи 21-30 из 32.
15.10.2018
№218.016.921f

Способ восстановления ильменитовых концентратов

Изобретение относится к области металлургии, в частности к способу переработки ильменитовых концентратов для производства титановых шлаков, являющихся сырьем для получения диоксида титана и металлического титана. Способ переработки ильменитовых концентратов включает подготовку шихты, содержащей...
Тип: Изобретение
Номер охранного документа: 0002669675
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.923e

Способ гранулирования шихты, содержащей ильменитовый концентрат и антрацит

Изобретение относится к способам гранулирования шихты рудных концентратов для подготовки к металлургическому переделу. Способ гранулирования шихты, содержащей ильменитовый концентрат и антрацит, включает измельчение и смешивание компонентов шихты, добавление связующего с получением...
Тип: Изобретение
Номер охранного документа: 0002669674
Дата охранного документа: 12.10.2018
19.10.2018
№218.016.9431

Связующее для изготовления керамических форм, используемых для литья по выплавляемым моделям жаропрочных сплавов, и способ получения связующего для изготовления керамических форм, используемых для литья по выплавляемым моделям жаропрочных сплавов

Изобретение относится к литейному производству. Связующее содержит в мас.%: водно-коллоидный кремнезоль не менее 85, стабилизатор - поливиниловый спирт не менее 0,002, бактерицид - водный раствор формалина не менее 0,05, смачивающий компонент - алкилбензолсульфокислоту не менее 0,10,...
Тип: Изобретение
Номер охранного документа: 0002670115
Дата охранного документа: 18.10.2018
19.10.2018
№218.016.9473

Связующее для изготовления керамических форм, используемых для равноосного литья по выплавляемым моделям жаропрочных сплавов

Изобретение относится к литейному производству. Связующее содержит, мас. %: кремнезоль с размером частиц 8-10 нм, содержанием SiO 25-31% не менее 95, поливиниловый спирт 0,003-0,005, алкилбензолсульфокислота не менее 0,01, смесь пента-475 не менее 0,001 с лапролом 6003 0,015-0,0225, бактерицид...
Тип: Изобретение
Номер охранного документа: 0002670116
Дата охранного документа: 18.10.2018
26.01.2019
№219.016.b476

Универсальная установка для проверки лазерного дальномера

Изобретение относится к области контрольно-измерительной техники импульсных лазерных дальномеров. Универсальная установка для проверки лазерного дальномера (ЛД) содержит ослабитель мощности лазерных импульсов проверяемого ЛД, устройство формирования стартового импульса, устройство сопряжения,...
Тип: Изобретение
Номер охранного документа: 0002678259
Дата охранного документа: 24.01.2019
08.03.2019
№219.016.d381

Продольно-изгибный гидроакустический преобразователь

Предложен продольно-изгибный гидроакустический преобразователь с бочкообразной боковой стенкой герметичного корпуса, имеющей максимальные средний диаметр и толщину на середине продольной оси симметрии и минимальные средний диаметр и толщину на торцах, гофрированной вдоль продольной оси...
Тип: Изобретение
Номер охранного документа: 0002681268
Дата охранного документа: 05.03.2019
20.03.2019
№219.016.e8b8

Способ выращивания кристаллов нитридов металлов iii группы

Изобретение относится к изготовлению полупроводниковых приборов путем нанесения полупроводниковых материалов на подложку и может быть использовано в полупроводниковой промышленности. Способ выращивания кристаллов нитридов металлов III группы из газовой фазы включает размещение подложки 12 в...
Тип: Изобретение
Номер охранного документа: 0002405867
Дата охранного документа: 10.12.2010
15.08.2019
№219.017.bfa6

Способ нанесения пироуглеродного покрытия на литейные керамические формы

Изобретение относится к литейному производству, а именно к способам нанесения пироуглеродных покрытий на литейные керамические формы для литья преимущественно титановых и других химически активных сплавов. Способ нанесения пироуглеродного покрытия на литейные керамические формы включает...
Тип: Изобретение
Номер охранного документа: 0002697204
Дата охранного документа: 13.08.2019
17.02.2020
№220.018.0319

Способ переработки горячего технического пентаэритрито-формиатного маточного раствора

Настоящее изобретение относится к способу переработки горячего технического пентаэритрито-формиатного маточного раствора, включающему введение в маточный раствор реагентов, охлаждение смеси маточного раствора и реагента при перемешивании, выдержку суспензии при определенной температуре,...
Тип: Изобретение
Номер охранного документа: 0002714326
Дата охранного документа: 14.02.2020
02.03.2020
№220.018.07d9

Способ очистки сточных вод от ионов аммония

Изобретение может быть использовано для очистки сточных вод на предприятиях химической, нефтехимической, металлургической, коксохимической промышленности. Очистка сточных вод от ионов аммония включает добавку в сточные воды растворов, содержащих фосфат-ионы и ионы магния, и осаждение...
Тип: Изобретение
Номер охранного документа: 0002715529
Дата охранного документа: 28.02.2020
+ добавить свой РИД