×
29.04.2019
219.017.3e44

Результат интеллектуальной деятельности: Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)

Вид РИД

Изобретение

Аннотация: Тракт воздушного охлаждения сопловой лопатки выполнен трехканальным. Сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиальной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами. Входной участок первого канала тракта включает полость большой полки, сообщенную с передней полостью и входной кромкой каждой лопатки блока для съема избыточной теплоты пера лопатки. Входной участок второго канала тракта сообщен через наружное кольцо с задней полостью лопатки с выходом нагретого теплосъемом воздуха в проточную часть ТВД. Входной участок третьего канала тракта охлаждения лопатки выполнен в виде общей щели в стенке малой полки блока, сообщенной с передней полостью каждой лопатки блока для съема избытков теплоты с передней части стенок спинки и корыта пера лопатки. Дефлектор передней полости выполнен в виде пластинки, открытой к входной кромке, наделенной семью рядами отверстий с осями, разнонаклоненными к потоку рабочего тела, и диагонально разделяет спинкой переднюю полость для встречного охлаждения стенок диагональных частей полости воздухом из первого и третьего каналов тракта. Спинка и корыто в передней полости наделены двумя и четырьмя рядами отверстий. Задняя полость лопатки снабжена дефлектором, наделенным перфорационными отверстиями до вихревой матрицы и предназначенным для охлаждения меньшей частью потока задней части лопатки и большей частью потока охлаждения ротора ТВД. Изобретение направлено на повышение эффективности охлаждения лопаток и ресурса соплового аппарата ТВД. 3 н. и 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к области авиадвигателестроения, а именно, к сопловым аппаратам турбины высокого давления газотурбинного двигателя (ГТД) в составе газотурбинной установки газоперекачивающего агрегата.

Известна система охлаждения турбины двигателя, содержащая многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, сопловый аппарат закрутки и каналы охлаждения, при этом каждый канал воздуховода образован перфорированным дефлектором, установленным в сопловой лопатке вдоль ее внутренней поверхности (RU 2196239 С2, опубл. 10.01.2003).

Известны сопловые лопатки газовой турбины, которые установлены верхними полками в наружном кольце и образуют с ним переднюю и заднюю полости, которые на входе через каналы сообщаются с полостью подвода охлаждающего воздуха, а на выходе - с полостями сопловых лопаток (RU 2211926 С2, опубл. 10.09.2003).

Известна охлаждаемая сопловая лопатки газовой турбины, содержащая разделенные перегородкой первую полость со стороны входной кромки и вторую полость со стороны выходной кромки. Во второй полости установлен дефлектор (RU 2237811 С1, опубл. 10.10.2004).

Известна сопловая лопатки охлаждаемой турбины, выполненная в виде конструктивного элемента, ограниченного верхней и нижней полками. Лопатки выполнены с вогнутой и выпуклой стенками пера, содержат раздаточные полости и дефлекторы с образованием охлаждающих каналов. Стенки лопатки и охлаждающий дефлектор выполнены с перфорационными отверстиями (RU 2514818 С1, опубл. 10.05.2014).

К недостаткам известных решений относятся повышенная конструктивная сложность соплового аппарата, недостаточная конструктивная проработанность системы охлаждения наиболее теплонапряженных участков соплового аппарата, неадаптированность конкретно к техническим решениям ГТД газоперекачивающего агрегата, сложность получения компромиссного сочетания повышенных значений КПД и ресурса двигателя с одновременным повышением компактности и снижением материало- и энергоемкости.

Задача, решаемая группой изобретений, объединенных единым творческим замыслом, состоит в повышении эффективности охлаждения и ресурса лопаток соплового аппарата и ротора ТВД стационарного газотурбинного двигателя авиационного типа в составе газоперекачивающих агрегатов для транспортировки газа или в газотурбинной электростанции.

Поставленная задача решается тем, что тракт воздушного охлаждения лопатки соплового аппарата (СА) турбины высокого давления газотурбинного двигателя (ГТД) в составе газотурбинной установки (ГТУ) газоперекачивающего агрегата (ГПА), включающего сопловый венец, образованный из сопловых блоков, содержащих сопловые лопатки, выполненные за одно целое с большой и малой полками СА и объединенные в блоке не менее чем по три, согласно изобретению, выполнен трехканальным, для чего сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиально ориентированной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами, при этом входной участок двух каналов тракта расположен в большой полке блока и обрамлен наружным кольцом СА, снабженным двумя отверстиями, фронтальное из которых выполнено с возможностью подачи охлаждающего воздуха из вторичного потока камеры сгорания (КС) в образованный полостью большой полки блока входной участок первого из указанных канала тракта, сообщенного с передней полостью каждой лопатки блока для съема избыточной теплоты с входной кромки пера лопатки, а тыльное отверстие наружного кольца выполнено для подачи охлаждающего воздуха от воздуховоздушного теплообменника (ВВТ), примыкающим по контуру непосредственно к входному патрубку второго канала тракта, комплиментарно сообщенному с задней полостью лопатки, с последующим выходом отработанного по теплосъему воздуха в проточную часть ТВД и смешения его с первичным потоком рабочего тела; входной участок третьего канала тракта охлаждения лопатки расположен в стенке малой полки блока и выполнен в виде общего для блока щелевого отверстия, сообщенного через фигурное отверстие в цилиндрически изогнутом элементе малой полки с передней полостью каждой лопатки блока с возможностью съема избыточной теплоты передней части стенок спинки и корыта пера лопатки, при этом следующий за входным участок первого канала тракта охлаждения лопатки продлен из полости большой полки во фронтальную часть передней полости лопатки, снабженной дефлектором, который выполнен диагонально разделяющим по высоте переднюю полость с возможностью подачи в нее охлаждающего воздуха из двух встречных потоков соответственно из первого через большую и третьего канала тракта через малую полку блока, причем дефлектор выполнен в виде пластинки, согнутой по части высоты внутреннего профиля передней полости с диагональной спинкой и зазором у стенок полости с уменьшением площади от Fвх.б.п.max эффективного входного сечения тракта в направлении от большой к малой полке до вх.б.п.min=0 в корневом сечении полости, а фронтальная часть дефлектора выполнена открытой для воздушного охлаждения входной кромки пера лопатки, наделенной перфорационными отверстиями, сгруппированными не менее чем в семь рядов, ориентированных вдоль направляющей профиля пера, с последующим выходом нагретого теплосъемом воздуха в первичный поток рабочего тела из КС в проточную часть ТВД, причем отверстия в различных группах рядов выполнены с различными диаметрами, угловой ориентацией осей и взаимным радиальным смещением в шахматном порядке в смежных рядах, при этом отверстия не менее трех средних рядов во входной кромке пера ориентированы осями вдоль оси турбины и выполнены с диаметрами, превышающими не менее чем в 1,3 раза диаметры отверстий двух пар других рядов, попарно симметрично отклоненных в поперечном сечении пера на угол не менее 40° от осевой плоскости симметрии трех средних рядов.

Поставленная задача по второму варианту решается тем, что тракт воздушного охлаждения лопатки соплового аппарата ТВД газотурбинного двигателя в составе ГТУ ГПА, включающего сопловый венец, образованный из сопловых блоков, содержащих сопловые лопатки, выполненные на одно целое с большой и малой полками СА и объединенные в блоке не менее чем по три, согласно изобретению, выполнен трехканальным, для чего сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиально ориентированной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами, при этом входной участок двух каналов тракта расположен в большой полке блока и обрамлен наружным кольцом СА, снабженным двумя отверстиями, фронтальное из которых выполнено с возможностью подачи охлаждающего воздуха из вторичного потока КС в образованный полостью большой полки блока входной участок первого из указанных канала тракта, сообщенного с передней полостью каждой лопатки блока для съема избыточной теплоты с входной кромки пера лопатки, а тыльное отверстие наружного кольца СА выполнено для подачи охлаждающего воздуха от ВВТ примыкающем по контуру непосредственно к входному патрубку второго канала тракта, комплиментарно сообщенному с задней полостью лопатки, с последующим выходом отработанного по теплосъему воздуха в проточную часть ТВД и смешения его с первичным потоком рабочего тела; входной участок третьего канала тракта охлаждения лопатки расположен в стенке малой полки блока и выполнен в виде общего для блока щелевого отверстия, сообщенного через фигурное отверстие в цилиндрически изогнутом элементе малой полки с передней полостью каждой лопатки блока с возможностью съема избыточной теплоты передней части стенок спинки и корыта пера лопатки, при этом участок второго канала тракта, расположенный в задней полости лопатки, снабжен дефлектором в виде согнутой пластинки, замкнутой по тыльной радиальной кромке, наделенным перфорационными отверстиями на участках, обращенных к корыту и спинке пера, а также открыт по торцам с возможностью сообщения по охлаждающему потоку на входе через входной патрубок в большой полке, а на выходе сообщен в малой полке с полостью и выходным патрубком, при этом часть осевой длины второго канала тракта в задней полости пера лопатки снабжена вихревой матрицей, с перекрестным оребрением ответных поверхностей стенок в полости пера и завершена не менее чем двумя параллельными рядами выступов, расположенных под углом один к другому, за которыми канал тракта завершен прерывистой щелью, предназначенной для выхода отработанного охлаждающего воздуха в проточную часть ТВД в первичный поток рабочего тела, причем указанный дефлектор занимает большую часть объема задней полости лопатки до вихревой матрицы и предназначен для выполнения двух функций: охлаждения меньшей частью потока задней части лопатки и пропуска с минимальным нагревом большей части потока для охлаждения ротора ТВД, при этом для реализации первой функции система перфорационных отверстий в боковых поверхностях дефлектора задней полости выполнена с суммарной площадью ΣFо.д.з.п. проходного сечения, определенной в диапазоне значений ΣFо.д.з.п.=(34,3÷49,4)⋅10-62], а для реализации второй функции предназначено основное проходное сечение дефлектора площадью Fп.с.д., превышающей суммарную площадь ΣFо.д.з.п. отверстий в N раз, где N определено из выражения (N=Fп.с.д./ΣFо.д.з.п.) и определено в диапазоне значений N=(4,8÷6,9).

При этом вихревая матрица задней полости пера лопатки может быть выполнена из двух ответных систем взаимно перекрестных ребер, разнесенных по двум сторонам задней полости лопатки с шириной шага не менее восьми максимальных высот ребра, а высота ребер выполнена уменьшающейся в направлении выхода из матрицы и не превышающей половины высотного расстояния между внутренними поверхностями спинки и корыта лопатки на соответствующем участке матрицы, кроме того матрица дополнена по ходу рабочего тела не менее чем двумя рядами аэродинамических завихрителей в виде направленных под встречными углами продолговатых выступов, взаимно смещенных по направлению потока охлаждающего воздуха и имеющих в каждом ряду высоту, перекрывающую, по меньшей мере, большую часть высоты щели между стенками лопатки на соответствующем участке профиля канала лопатки.

Поставленная задача по третьему варианту решается тем, что тракт воздушного охлаждения лопатки соплового аппарата ТВД газотурбинного двигателя в составе ГТУ ГПА, включающего сопловый венец, образованный из сопловых блоков, содержащих сопловые лопатки, выполненные на одно целое с большой и малой полками СА и объединенные в блоке не менее чем по три, согласно изобретению, выполнен трехканальным, для чего сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиально ориентированной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами, при этом входной участок двух каналов тракта расположен в большой полке блока и обрамлен наружным кольцом СА, снабженным двумя отверстиями, фронтальное из которых выполнено с возможностью подачи охлаждающего воздуха из вторичного потока КС в образованный полостью большой полки блока входной участок первого из указанных канала тракта, сообщенного с передней полостью каждой лопатки блока для съема избыточной теплоты с входной кромки пера лопатки, а тыльное отверстие наружного кольца СА выполнено для подачи охлаждающего воздуха от ВВТ примыкающем по контуру непосредственно к входному патрубку второго канала тракта, комплиментарно сообщенному с задней полостью лопатки, с последующим выходом отработанного по теплосъему воздуха в проточную часть ТВД и смешения его с первичным потоком рабочего тела; входной участок третьего канала тракта охлаждения лопатки расположен в стенке малой полки блока и выполнен в виде общего для блока щелевого отверстия, сообщенного через фигурное отверстие в цилиндрически изогнутом элементе малой полки с передней полостью каждой лопатки блока с возможностью съема избыточной теплоты передней части стенок спинки и корыта пера лопатки, для чего участок третьего канала тракта охлаждения лопатки расположен в передней полости лопатки с возможностью теплосъема потоком охлаждающего воздуха, поступающим во встречном относительно потоку воздуха, охлаждающего входную кромку пера лопатки, направлении, с которым разделен диагональной спинкой дефлектора, расположенного на смежном участке первого канала тракта воздушного охлаждения лопатки, при этом площадь Fвх.м.п. входного сечения передней полости лопатки для потока воздуха из полости малой полки выполнена уменьшающейся до Fmin=0 к периферийному сечению указанного канала пера, при этом выходная часть третьего канала тракта, охлаждающего тыльную часть передней полости лопатки, выполнена в виде двух систем рядов перфорационных отверстий, расположенных соответственно в спинке и корыте пера лопатки, причем спинка лопатки в указанном осевом интервале передней полости наделена, по меньшей мере, двумя рядами перфорационных отверстий с диаметром не менее чем в 1,2 раза превышающем диаметр отверстий в трех средних рядах во входной кромке лопатки, отверстия в спинке выполнены с осями, отклоненными по потоку рабочего тела в проекции на плоскость, нормальную к оси лопатки, на угол не менее 35°, а стенка корыта в осевом интервале передней полости наделена, по меньшей мере, двумя парами рядов отверстий, диаметры, по меньшей мере, двух рядов из которых выполнены превышающими диаметры отверстий в спинке пера лопатки не менее чем в 1,25 раза.

Технический результат, достигаемый группой изобретений, объединенных единым творческим замыслом, заключается в повышении эффективности охлаждения сопловых лопаток за счет выравнивания температурного поля съемом избыточной теплоты с теплонапряженных участков сопловых лопаток и оптимизации расхода охлаждающего воздуха в разных зонах лопаток. Это достигают за счет улучшения конструктивных и аэродинамических параметров лопаток и дефлекторов, позволяющих пропускать охлаждающий поток воздуха через три канала, образующих единый тракт воздушного охлаждения лопаток, включающий канал охлаждения входной кромки лопатки, канал охлаждения стенок спинки и корыта пера лопатки в осевом интервале передней полости лопатки и канал охлаждения задней части лопатки с пропуском и направлением большей части потока на охлаждение ротора ТВД, обеспечивая тем самым повышение ресурса сопловой лопатки и эксплуатационных характеристик соплового аппарата ТВД в целом, а также достигают надежности, экономичности и долговечности работы двигателя в процессе его эксплуатации в составе газоперекачивающих агрегатов для транспортировки газа.

Сущность группы изобретений поясняется чертежами, где:

на фиг. 1 изображена лопатка соплового аппарата ТВД, продольный разрез;

на фиг. 2 - лопатка соплового аппарата ТВД, поперечный разрез.

В группе изобретений, объединенных единым творческим замыслом, сопловый аппарат турбины высокого давления газотурбинного двигателя в составе газотурбинной установки газоперекачивающего агрегата включает сопловый венец, образованный из сопловых блоков, содержащих сопловые лопатки 1. Лопатки 1 выполнены за одно целое с большой и малой полками 2 и 3. Лопатки 1 объединены в блоке не менее чем по три. Сопловый аппарат турбины включает также наружное и внутреннее кольца, большое и малое воздухозаборные кольца и аппарат закрутки воздуха (на чертежах не показано).

Сопловая лопатка 1 выполнена полой и с аэродинамическим профилем, наделенным выпуклой спинкой 4 и вогнутым корытом 5. Спинка 4 и корыто 5 пера лопатки соединены через входную по ходу рабочего тела кромку 6 и выходную кромку 7. Сопловая лопатка 1 наделена радиально ориентированной перегородкой 8, разделяющей внутренний объем пера на переднюю полость 9 и заднюю полость 10 с образованием трехканального тракта воздушного охлаждения лопатки.

Входные участки 11 и 12 первого и второго каналов расположены в большой полке 2 блока, обрамленной наружным кольцом СА, снабженным двумя отверстиями (на чертежах не показано) для подачи охлаждающего воздуха в каждый канал тракта охлаждения лопатки. Фронтальное отверстие наружного кольца выполнено с возможностью подачи охлаждающего воздуха из вторичного потока камеры сгорания во входной участок 11 первого канала тракта, образованный полостью 13 большой полки блока. Входной участок 11 первого канала тракта сообщен с передней полостью 9 каждой лопатки 1 блока для съема избыточной теплоты с входной кромки 7 пера лопатки. Тыльное отверстие наружного кольца выполнено для подачи охлаждающего воздуха от ВВТ, примыкающим по контуру непосредственно к входному патрубку 14 второго канала тракта. Входной патрубок 14 комплиментарно сообщен с задней полостью 10 лопатки, с последующим выходом отработанного по теплосъему воздуха в проточную часть ТВД и смешения его с первичным потоком рабочего тела. Входной участок третьего канала тракта охлаждения лопатки расположен во фронтальной стенке 15 малой полки 3 блока и выполнен в виде щелевого отверстия 16, общего для блока и сообщенного через фигурное отверстие 17 в цилиндрически изогнутом элементе малой полки 3 с передней полостью 9 каждой лопатки 1 блока с возможностью съема избыточной теплоты передней части стенок спинки 4 и корыта 5 пера лопатки 1.

Следующий за входным участком 11 участок первого канала тракта охлаждения лопатки продлен из полости 13 большой полки 2 во фронтальную часть 18 передней полости 9 лопатки. Передняя полость 9 лопатки снабжена дефлектором 19, который выполнен диагонально разделяющим по высоте переднюю полость 9 с возможностью подачи в нее охлаждающего воздуха КС из двух встречных потоков соответственно из первого канала через большую полку 2 и третьего канала тракта через малую полку 3 блока. Дефлектор 19 выполнен в виде пластинки, согнутой по части высоты внутреннего профиля передней полости 9 с диагональной спинкой 20 и зазором у стенок полости 9 с уменьшением площади от Fвх.б.п.max эффективного входного сечения тракта в направлении от большой полки 2 к малой полке 3 до F вх.б.п.min=0 в корневом сечении полости. Фронтальная часть 21 дефлектора 19 выполнена открытой для воздушного охлаждения входной кромки 7 пера лопатки. Для чего входная кромка 7 пера лопатки 1 наделена перфорационными отверстиями 22 и 23, сгруппированными не менее чем в семь рядов, ориентированных вдоль направляющей профиля пера, с последующим выходом нагретого теплосъемом воздуха в первичный поток рабочего тела из КС в проточную часть ТВД. Отверстия в различных группах рядов выполнены с различными диаметрами, угловой ориентацией осей и взаимным радиальным смещением в шахматном порядке в смежных рядах. Отверстия 22 не менее трех средних рядов во входной кромке 7 пера ориентированы осями вдоль оси турбины и выполнены с диаметрами, превышающими не менее чем в 1,3 раза диаметры отверстий 23 двух пар других рядов. Ряды отверстий 23 попарно симметрично отклонены в поперечном сечении пера на угол не менее 40° от осевой плоскости симметрии трех средних рядов.

При этом участок второго канала тракта, расположенный в задней полости 10 лопатки 1 снабжен дефлектором 24 в виде согнутой пластинки, замкнутой по тыльной радиальной кромке. Дефлектор 24 снабжен перфорационными отверстиями 25 на участках, обращенных к корыту 5 и спинке 4 пера. Дефлектор 24 открыт по торцам с возможностью сообщения по охлаждающему потоку от ВВТ на входе через входной патрубок 14 в большой полке 2, а на выходе сообщен в малой полке 3 с полостью 26 и выходным патрубком 27. Часть осевой длины второго канала тракта в задней полости 10 пера лопатки снабжена вихревой матрицей 28 с перекрестным оребрением ответных поверхностей стенок в полости 10 пера и не менее чем двумя параллельными рядами выступов 29, расположенных под углом один к другому. Завершен канал тракта прерывистой щелью 30, предназначенной для выхода отработанного охлаждающего воздуха в проточную часть ТВД в первичный поток рабочего тела.

Дефлектор 24 занимает большую часть объема задней полости 10 лопатки до вихревой матрицы 28 и предназначен для выполнения двух функций: охлаждения меньшей частью потока задней части лопатки 1 и пропуска и направления с минимальным нагревом большей части потока для охлаждения ротора ТВД.

Для реализации первой функции система перфорационных отверстий 25 в боковых поверхностях дефлектора 24 задней полости 10 выполнена с суммарной площадью ΣFо.д.з.п. проходного сечения, определенной в диапазоне значений ΣFо.д.з.п.=(34,3÷49,4)⋅10-62].

Для реализации второй функции дефлектора 24 предназначено основное проходное сечение дефлектора площадью Fп.с.д., превышающей суммарную площадь ΣFо.д.з.п. отверстий в N раз, где N определено из выражения в диапазоне значений, составляющем

N=Fп.с.д./ΣFо.д.з.п.=(4,8÷6,9).

Вихревая матрица 28 задней полости 10 пера лопатки 1 выполнена из двух ответных систем взаимно перекрестных ребер 31, разнесенных по двум сторонам задней полости 10 лопатки с шириной шага не менее восьми максимальных высот ребра. Высота ребер матрицы 28 выполнена уменьшающейся в направлении выхода из матрицы 28 и не превышающей половины высотного расстояния между внутренними поверхностями спинки 4 и корыта 5 лопатки на соответствующем участке матрицы. Матрица 28 дополнена по ходу рабочего тела не менее чем двумя рядами аэродинамических завихрителей в виде направленных под встречными углами продолговатых выступов 29. Выступы 29 взаимно смещены по направлению потока охлаждающего воздуха и имеют в каждом ряду высоту, перекрывающую, по меньшей мере, большую часть высоты щели 30 между стенками лопатки на соответствующем участке профиля канала лопатки.

Участок третьего канала тракта охлаждения лопатки расположен в передней полости 9 лопатки 1 с возможностью теплосъема потоком охлаждающего воздуха КС, направленным во встречном относительно потоку воздуха, охлаждающего входную кромку 7 пера лопатки, направлении (к периферии), с которым разделен диагональной спинкой 20 дефлектора 19, расположенного на смежном участке первого канала тракта воздушного охлаждения лопатки. Площадь Fвх.м.п. входного сечения передней полости 9 лопатки 1 для потока воздуха из полости малой полки 3 выполнена уменьшающейся до Fmin=0 к периферийному сечению указанного канала пера.

Выходная часть третьего канала тракта, охлаждающего тыльную часть передней полости 9 лопатки, выполнена в виде двух систем рядов перфорационных отверстий 32, расположенных в спинке 4 пера, и перфорационных отверстий 33 и 34, расположенных соответственно в корыте 5 пера лопатки. Спинка 4 лопатки в указанном осевом интервале передней полости 9 наделена, по меньшей мере, двумя рядами перфорационных отверстий 32 с диаметром не менее чем в 1,2 раза превышающем диаметр отверстий 22 в трех средних рядах во входной кромке 7 лопатки. Отверстия 32 в спинке 4 выполнены с осями, отклоненными по потоку рабочего тела в проекции на плоскость, нормальную к оси лопатки, на угол не менее 35°. Стенка корыта 5 в осевом интервале передней полости 9 наделена, по меньшей мере, двумя парами рядов отверстий 33 и 34. При этом диаметры, по меньшей мере, двух рядов отверстий 34 выполнены превышающими диаметры отверстий 32 в спинке 4 пера лопатки не менее чем в 1,25 раза.

Охлаждают сопловую лопатку через трехканальный тракт воздушного охлаждения следующим образом.

Потоки охлаждающего воздуха из вторичного потока камеры сгорания и от ВВТ через фронтальные и тыльные отверстия соответственно в наружном кольце СА поступает во входные участки 11 и 12 первого и второго каналов тракта воздушного охлаждения сопловых лопаток. Поток охлаждающего воздуха КС первого канала тракта заполняет полость 13 большой полки 2, поступает во фронтальную часть 21 передней полости 9 лопатки 1 и заполняет объем дефлектора 19. Выходя из дефлектора 19, поток воздуха обдувает входную кромку 7 пера лопатки 4, охлаждая ее изнутри. Нагретый теплосъемом воздух через перфорационные отверстия 22 и 23 во входной кромке 7 выходит в общий поток рабочего тела. Съем избыточной теплоты с фронтальной части лопатки 1 производят встречным потоком охлаждающего воздуха третьего канала тракта, который поступает через щелевое отверстие 16 в малой полке 3. Из передней полости 9 лопатки 1 нагретый теплосъемом воздух через перфорационные отверстия 32, 33 и 34 выходит в общий поток рабочего тела, охлаждая при этом стенки спинки 4 и корыта 5 пера в осевом интервале передней полости 9 лопатки. Поток охлаждающего воздуха от ВВТ второго канала из вторичного потока камеры 15 сгорания поступает через входной патрубок 14 в большой полке 2 в заднюю полость 10 лопатки 1. Из задней полости 10 лопатки 1 большая часть потока воздуха (~70%) с минимальным нагревом проходит в полость 26 малой полки 3 и далее в выходной патрубок 27 для охлаждения ротора ТВД. При этом съем избыточной теплоты с задней полости лопаток осуществляют меньшей частью потока через перфорационные отверстия 25 в дефлекторе 24. После чего поток поступает в охлаждающую вихревую матрицу 28 и через прерывистую щель 30 в выходной кромке 8 пера в общий поток рабочего тела, охлаждая при этом тыльную часть лопатки в осевом интервале задней полости 10 лопатки 1. Для реализации охлаждения меньшей частью потока тыльной части лопатки система перфорационных отверстий 25 в боковых поверхностях дефлектора 24 задней полости 10 выполнена с суммарной площадью ΣFo.д.з.п.=42,96⋅10-62]. Для реализации пропуска с минимальным нагревом большей части потока для охлаждения ротора ТВД площадь Fп.с.д. основного проходного сечения дефлектора 24 площадью превышает суммарную площадь ΣFо.з.д. отверстий 25 в 5,5 раза.

Таким образом, за счет улучшения конструктивных и аэродинамических параметров лопаток соплового аппарата достигают повышение эффективности охлаждения теплонапряженных элементов лопаток, достигая тем самым повышении эксплуатационных характеристик соплового аппарата ТВД и надежности, экономичности и долговечности работы двигателя в целом в процессе его эксплуатации в составе газоперекачивающих агрегатов для транспортировки газа или в газотурбинной электростанции.


Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)
Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)
Источник поступления информации: Роспатент

Показаны записи 61-70 из 71.
24.06.2020
№220.018.29c6

Опора турбины турбомашины

Изобретение относится к области турбо- и авиадвигателестроения, а именно к устройствам опор турбин. Изобретение позволяет исключить возможность чрезмерной стяжки упругих элементов с возможностью контроля натяжения спиц по моменту затяжки регулировочной гайки на ключе при сборке, а также...
Тип: Изобретение
Номер охранного документа: 0002724074
Дата охранного документа: 19.06.2020
25.06.2020
№220.018.2af7

Способ работы прямоточного воздушно-реактивного двигателя и устройство для его реализации

Изобретение относится к способу работы прямоточного воздушно-реактивного двигателя на основе непрерывно-детонационных камер сгорания и устройству для его реализации. Используют две кольцевые непрерывно-детонационные камеры сгорания, для которых задают начальную температуру их стенок и рабочую...
Тип: Изобретение
Номер охранного документа: 0002724557
Дата охранного документа: 23.06.2020
25.06.2020
№220.018.2af8

Способ и устройство организации периодической работы непрерывно-детонационной камеры сгорания

Способ организации периодической работы непрерывно-детонационной камеры сгорания включает подачу окислителя и жидкого топлива в виде струй и пристеночных пленок и инициирование горения. Для камеры сгорания определяют усталостную прочность ее стенок и критическую температуру, при которой она...
Тип: Изобретение
Номер охранного документа: 0002724558
Дата охранного документа: 23.06.2020
16.07.2020
№220.018.3357

Система удаленного мониторинга газотурбинной установки

Изобретение относится к удаленному мониторингу. Система удаленного мониторинга газотурбинной установки содержит датчики, передающие информацию об эксплуатационных параметрах установки на сервер нижнего уровня, который хранит и передает информацию на сервер верхнего уровня. Сервер нижнего уровня...
Тип: Изобретение
Номер охранного документа: 0002726317
Дата охранного документа: 14.07.2020
22.04.2023
№223.018.5119

Газоперекачивающий агрегат

Изобретение относится к области устройств газоперекачивающих агрегатов, а именно, к соединению газотурбинного двигателя с силовой турбиной и выходным валом с выхлопным устройством, содержащим выхлопную улитку при их монтаже в газоперекачивающий агрегат. Газоперекачивающий агрегат, включающий...
Тип: Изобретение
Номер охранного документа: 0002794302
Дата охранного документа: 14.04.2023
20.05.2023
№223.018.676f

Реактивное сопло с центральным телом

Изобретение относится к области авиадвигателестроения. Реактивное сопло с центральным телом, соединенное с двигателем и содержащее выходное устройство с центральным телом, проточной частью и выходным сечением, отличным от осесимметричного, содержит двигательную часть, закрепленную на двигателе,...
Тип: Изобретение
Номер охранного документа: 0002794950
Дата охранного документа: 26.04.2023
03.06.2023
№223.018.766f

Способ управления расходом топлива в камеру сгорания на запуске газотурбинного двигателя

Изобретение относится к области управления работой газотурбинных двигателей (ГТД), преимущественно авиационных, и может быть использовано для управления подачей топлива в ГТД на режиме запуска. Предлагается способ управления расходом топлива в камеру сгорания на запуске газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002796562
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.769a

Ротор турбины низкого давления газотурбинного двигателя

Изобретение относится к авиадвигателестроению, а именно к конструкциям роторов турбины низкого давления (ТНД) газотурбинного двигателя (ГТД). Ротор турбины низкого давления газотурбинного двигателя, содержащий промежуточный вал, носок с размещенным на нем подшипником, при этом в носке выполнены...
Тип: Изобретение
Номер охранного документа: 0002796564
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7c05

Способ диагностики технического состояния газотурбинного двигателя

Изобретение относится к неразрушающему контролю технического состояния газотурбинных двигателей. Способ диагностики технического состояния газотурбинного двигателя, заключающийся в том, что выбирают параметры, подлежащие диагностическому контролю, текущее значение которых регистрируют на...
Тип: Изобретение
Номер охранного документа: 0002745820
Дата охранного документа: 01.04.2021
16.06.2023
№223.018.7d15

Гидродинамический демпфер подшипниковой опоры ротора турбомашины

Изобретение относится к области машиностроения. Демпфер содержит внутренний корпус, образующий с корпусом радиальный зазор. На внутренней поверхности корпуса и наружной поверхности внутреннего корпуса выполнены проточки. В полости, образованной несквозными цилиндрическими проточками,...
Тип: Изобретение
Номер охранного документа: 0002741824
Дата охранного документа: 28.01.2021
Показаны записи 61-70 из 401.
27.05.2014
№216.012.c926

Электронасосный агрегат вертикального типа (варианты)

Изобретение относится к пульповым электронасосным агрегатам вертикального типа. Агрегат содержит электродвигатель, центробежный насос и переходник с опорными фланцами и корпусом, в котором заключен силовой узел в виде муфты. Насос выполнен консольным, полупогружным, содержит корпусы ходовой и...
Тип: Изобретение
Номер охранного документа: 0002517260
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cede

Охлаждаемая турбина

Охлаждаемая турбина содержит сопловые лопатки, каждая из которых выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора...
Тип: Изобретение
Номер охранного документа: 0002518729
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf05

Охлаждаемая турбина

Охлаждаемая турбина содержит сопловые лопатки, теплообменник. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси...
Тип: Изобретение
Номер охранного документа: 0002518768
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d293

Охлаждаемая турбина газотурбинного двигателя

Охлаждаемая турбина газотурбинного двигателя содержит наружный корпус, установленные в нем надроторную вставку и сопловой аппарат с периферийными отверстиями, соединенными с системой подвода охлаждающего воздуха, ротор с рабочими лопатками с каналами охлаждения и выступом по периметру торцевой...
Тип: Изобретение
Номер охранного документа: 0002519678
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.de82

Устройство для смазки опорного подшипника ротора турбомашины

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Особенностью предложенной конструкции является использование для привода во вращение откачивающего насоса размещенного внутри масляной полости опорного подшипника...
Тип: Изобретение
Номер охранного документа: 0002522748
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e780

Способ испытаний газотурбинного двигателя

Изобретение относится к авиации, в частности к способу определения настроечного значения температуры газа для выключения охлаждения турбины при испытаниях и эксплуатации газотурбинного двигателя. При реализации заявленного способа испытаний газотурбинного двигателя повышается точность подсчета...
Тип: Изобретение
Номер охранного документа: 0002525057
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8c2

Способ охлаждения рабочих лопаток турбины двухконтурного газотурбинного двигателя и устройство для его осуществления

Устройство для охлаждения рабочих лопаток турбины двухконтурного газотурбинного двигателя, у которых внутренняя полость каждой лопатки разделена перегородкой на полость у входной кромки и остальную полость и содержит последовательно установленные воздухо-воздушный теплообменник, управляющие...
Тип: Изобретение
Номер охранного документа: 0002525379
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f7c8

Двухконтурный газотурбинный двигатель

Двухконтурный газотурбинный двигатель содержит компрессор, камеру сгорания, турбину высокого давления, турбину низкого давления с сопловым аппаратом. Внутренние полости соплового аппарата примыкают к стенкам охлаждаемых сопловых лопаток, соединены с полостью отбора охлаждающего воздуха и...
Тип: Изобретение
Номер охранного документа: 0002529269
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f7cb

Лопатка осевого компрессора

Лопатка осевого компрессора содержит входную кромку, выходную кромку, корыто и спинку с выполненными на ее поверхности вихрегенераторами сферической формы, вогнутыми внутрь лопатки. Каждый вихрегенератор снабжен, по меньшей мере, двумя подводящими каналами с выходными отверстиями диаметра...
Тип: Изобретение
Номер охранного документа: 0002529272
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f7cc

Рабочая лопатка турбины газотурбинного двигателя

абочая лопатка турбины газотурбинного двигателя содержит верхнюю торцевую бандажную полку, с размещенными на ней зубцами лабиринтного уплотнения. Бандажная полка имеет сквозную полость для охлаждающего воздуха и выполнена в виде параллелограмма, две стороны которого ориентированы в направлении...
Тип: Изобретение
Номер охранного документа: 0002529273
Дата охранного документа: 27.09.2014
+ добавить свой РИД