×
27.04.2019
219.017.3d0c

Результат интеллектуальной деятельности: Способ восстановления латунных кожухотрубных теплообменников

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэнергетике и может быть использовано для очистки теплоэнергетического оборудования, где в качестве теплоносителя используется вода, в том числе полностью забитых и не пригодных к эксплуатации кожухотрубных теплообменников от отложений, представленных на 80-90% карбонатами кальция и магния разных модификаций (кальцит, арагонит) любой плотности. Предлагается трубные доски теплообменника очистить механически от отложений, высверлить отложения в каждой трубке теплообменника на глубину не более 100 мм, передние доски теплообменника обработать гидрофобной кислотоустойчивой графитной смазкой. Чистящий водный раствор 10-14% соляной кислоты, содержащий 0,8-1% тиомочевины в качестве ингибитора, подавать индивидуально в каждую трубку теплообменника. Изобретение направлено на повышение эффективности очистки теплоэнергетического оборудования и полного восстановления его эксплуатационных характеристик, уменьшения затрат на процесс очистки. 1 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к теплоэнергетике и может быть использовано для очистки теплоэнергетического оборудования, где в качестве теплоносителя используется вода, в том числе полностью забитых и не пригодных к эксплуатации кожухотрубных теплообменников от отложений, представленных на 80-90% карбонатами кальция разных модификаций (кальцит, арагонит) любой плотности.

Известен способ очистки труб теплообменника, при котором к одному концу трубы приставляют струйное сопло и через трубу продувают содержащий струйное средство воздушный поток (пат. №2358219 МПК F28G 1/16 (2006.01)). Струйное сопло, имеющее выходное отверстие, не вводят в трубу, а с уплотнением прижимают к торцевой стороне конца трубы, окружающей выходное отверстие упорной поверхностью.

Данный способ относится к механическим способам очистки отложений, имеющих рыхлую структуру и не пригоден для очистки отложений высокой плотности.

Известен способ очистке трубчатых теплообменников от накипных отложений на их внутренних стенках (пат. РФ №2364813, МПК F28G 11/00 (2006.01)). Способ основан на создании в зоне очистки резкого понижения давления. Это достигается путем внесения в зону очистки веществ, которые при поджиге приводят к мгновенному выгоранию кислорода воздуха в зоне очистки. При этом происходит резкое понижение давления и быстрый разогрев настенных отложений, что способствует растрескиванию отложений, а затем пневмоударом быстро поступающего в полость трубы наружного воздуха, разрушают настенные отложения, и он выносит их наружу.

Однако, данный способ не пригоден для очистки полностью забитых трубок теплообменника и малоэффективен для удаления высокоплотных отложений.

Известен способ для очистки трубок теплообменника от накипи электрическими импульсными разрядами в жидкости, создаваемыми электродами, установленными с образованием разрядного промежутка (патент РФ №2049302, МПК F28G 5/00 (2006.01)). Разрушению подвергается накипь трубок тепло-обменниковт расположенная между наконечником высоковольтного электрода и стальной трубки теплообменника. Очистка трубок теплообменника производится последовательно трубка за трубкой.

Недостатком данного метода является возможность вздутия или порыва стенки трубки от гидравлического удара, возникающего при высоковольтном возмущении в месте очистки, и низкая эффективность при удалении высокоплотных отложений.

Наиболее близким аналогом к заявляемому способу является способ очистки теплоэнергетического оборудования от отложений и накипи (патент РФ №2218533, МПК F28G 9/00 (2000.01), включающий обработку внутренних поверхностей нагрева или теплообмена химическими реагентами при циклической или многократной циркуляции их в системе, при этом в качестве химических реагентов последовательно применяют сначала отработанные слабокислотные растворы с периодической подпиткой системы острой соляной кислотой при концентрации 20-28% (HCl) с ингибиторами, затем применяют водные 5-8%-ные растворы щелочи с температурой 50-80°С, а отмывку проводят горячей средой с температурой 50-70°С до и после пассивации, осуществляемой 1%-ным раствором соды или 2%-ным раствором аммиака.

Данный способ ограничен в применении, так как при его осуществлении необходима свободная циркуляции моющего раствора через очищаемое оборудование,

Задачей предлагаемого изобретения является очистка полностью забитых кожухотрубных теплообменников от карбонатных отложений любой плотности, разных модификаций (кальцит, арагонит).

Техническим результатом способа является повышение эффективности очистки теплоэнергетического оборудования и полное восстановления его эксплуатационных характеристик, уменьшение затрат на процесс очистки вследствие

Технический результат достигается тем, что трубные доски теплообменники очищают механически от отложений, высверливают отложения в каждой трубке теплообменника на глубину не более 100 мм, передние доски теплообменника обрабатывают гидрофобной кислотоустойчивой графитной смазкой. Чистящий водный раствор 10-14% соляной кислоты, содержащий тиомочевину в качестве ингибитора, подают индивидуально в каждую трубку теплообменника.

При этом чистящий раствор контактирует с отложениями, находящимися в трубке, растворяя их, тем самым освобождает от отложений трубку до образования сквозного прохода в ней. Мелкие частицы не растворившихся отложений уносятся с отработанным чистящим раствором.

На фигуре 1 представлена зависимость степени защиты от концентрации ингибитора; на фигуре 2 изображена схема устройства, с помощью которого возможно осуществление способа.

Экспериментально было установлено, что отложения внутри трубок разрушаются при использовании чистящего водного раствора от 2-х процентной концентрации, но процесс очистки становится длительным, а использование чистящего раствора концентрации более 14% приводит к большей коррозии трубок.

Оптимальная степень защиты ингибитора от коррозии в водном растворе 10% соляной кислоты наблюдаем при концентрации тиомочевины 0,8-1 мас. % (фиг. 1).

В таблице представлены результаты коррозионной стойкости латуни Л 68 и стали Ст3 после воздействия чистящих растворов в течение 4-х часов. Воздействие чистящего раствора на сталь учитывалось, т.к. трубные доски и корпус теплообменника изготовлены из стали. Из таблицы 1 видно, что минимальной коррозионной активностью к материалам оборудования обладает 10 -14% водный раствор соляной кислоты, содержащий 0,8-1 мас. % тиомочевины.

Для практической реализации способа не требуется специального дорогостоящего оборудования.

Рассмотрим осуществление способа с использованием распространенного традиционного оборудования. Трубные доски 1 и 2 теплообменника 3 со входными отверстиями латунных труб 4-7. Емкость 8 содержит чистящий раствор, который через насос 9 и вентили 10-13 коллектора 14, через трубки с наконечниками 15-18, подают внутрь труб 4-7 теплообменника 3. Под трубными досками 1, 2 расположены соответственно емкости 19, 20, предназначенные для сбора отработанного чистящего раствора и соединенные с емкостью 8.

Предварительно механически очищаем от отложений трубные доски 1 и 2 теплообменника 3, открывая доступ к латунным трубкам 4-7. Затем в трубах 4-7 теплообменника 3, высверливаем отложения на глубину 100 мм. Обрабатываем трубные доски 1, 2 гидрофобной кислотоустойчивой графитной смазкой.

В емкости 8 готовим чистящий водный раствор 10% соляной кислоты, содержащий 1 мас. % тиомочевины в качестве ингибитора.

Готовый раствор насосом 9 через открытые вентили 10-13 коллектора 14, через трубки с наконечниками 15-18 подают внутрь труб 4-7 теплообменника 3. Раствор реагирует с находящимися там отложениями и выходя наружу, стекает по трубным доскам 1, 2 в емкости 19, 20 и далее в емкость 8, в которой находится рабочий раствор. Регулировкой вентилей 10-13 осуществляют равномерную подачу рабочего раствора из емкости 8, поступающего через трубы с наконечниками 15-18, в трубы 4-7 теплообменника 3.

Пример конкретного выполнения

Объект очистки - внутренняя поверхность труб теплообменника. Диаметр кожуха 168 мм, трубный пучок, состоящий из 37 латунных труб марки Л68 диаметром 16×1 мм, длина 4000 мм, ГОСТ 27590.

Предварительно механически очищают от отложений трубные доски 1 и 2 теплообменника 3, открывая доступ ко входным отверстиям латунных труб 4-7. Затем в трубах 4-7 теплообменника 3 перфоратором высверливают отложения на глубину 100 мм. Обрабатывают трубные доски 1, 2 гидрофобной кислотоустойчивой графитной смазкой «Смазка Графитная Ж», ТУ 38.301-48-34-95.

В емкости 8 готовят чистящий раствор 10% соляной кислоты, содержащий 1 мас. % тиомочевины в качестве ингибитора раствора.

Готовый раствор из емкости 8 насосом 9 через открытые вентили 10-13 коллектора 14, через трубки с наконечниками 15-18, подают внутрь труб 4-7 теплообменника 3. Раствор реагирует с находящимися там отложениями и выходя наружу, стекает по трубным доскам 1, 2 в емкости 19, 20 и далее в рабочую емкость 8, в которой находится рабочий раствор. Регулировкой вентилей 10-13 осуществляют равномерную подачу раствора из емкости 8, поступающего через трубы с наконечниками 15-18, в трубы 4-7 теплообменника 3. После очистки первых четырех труб теплообменника 3 переставляем трубки с наконечниками в следующие трубы теплообменника и повторяем процесс очистки. В процессе очистки происходит нейтрализации используемых реагентов вследствие растворения карбонатов. Отработанный раствор разбавляют и сливают в канализацию. В емкости 8 готовят новый раствор и процесс продолжают до полной очистки теплообменника 3.

Очистка проводилась без демонтажа теплообменника непосредственно в котельной предприятия. Время очистки теплообменника составило 4 часа, при этом время очистки одной трубки составляет 15-20 мин.

Таким образом с традиционным оборудованием без демонтажа теплообменника осуществляли подачу химических реагентов без сложных монтажных работ. Эффективно осуществляют процесс взаимной нейтрализации реагентов перед сливом в канализацию в емкости. Предлагаемый способ позволяет проводить очистку теплообменного оборудования как с малым, так и с большим внутренним объемом, подбирая объем емкости, в которой готовят чистящий раствор.

На основании изложенного делаем вывод - эффективность очистки теплоэнергетического оборудования повысилась, происходит полное восстановления его эксплуатационных характеристик, уменьшились затраты на процесс очистки, т.е. технический результат достигнут. Совокупность признаков является новой и промышленно применимой. Предлагаемое техническое решение является изобретением.


Способ восстановления латунных кожухотрубных теплообменников
Способ восстановления латунных кожухотрубных теплообменников
Источник поступления информации: Роспатент

Показаны записи 41-50 из 57.
06.02.2020
№220.017.ff87

Способ получения производных фуро[3,2-c]изохинолин-5(4н)-она

Изобретение относится к органической химии, а точнее к способу получения гетероциклических соединений ряда изохинолинона, которые могут представлять интерес как биологически активные вещества или полупродукты для их синтеза. Способ получения производных фуро[3,2-с]изохинолин-5(4Н)-она общей...
Тип: Изобретение
Номер охранного документа: 0002713199
Дата охранного документа: 04.02.2020
21.03.2020
№220.018.0eca

Способ профилактики и коррекции метаболических и функциональных нарушений центральной нервной системы в условиях стресса

Изобретение относится к экспериментальной медицине и фармакологии и может быть использовано для профилактики и коррекции нейродегенеративных заболеваний, вызываемых оксидативным повреждением мозга и сопровождающихся функциональными расстройствами центральной нервной системы (ЦНС). Способ...
Тип: Изобретение
Номер охранного документа: 0002717107
Дата охранного документа: 18.03.2020
23.04.2020
№220.018.17fb

Способ определения полициклических ароматических углеводородов в почвах и донных отложениях

Изобретение относится к области аналитической химии и может быть использовано при экологическом контроле почв различного типа и донных отложений на содержание полиароматических углеводородов (ПАУ). Способ хромато-масс-спектрометрического определения ПАУ в режиме мониторинга заданных ионов в...
Тип: Изобретение
Номер охранного документа: 0002719578
Дата охранного документа: 21.04.2020
27.06.2020
№220.018.2c20

Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов, модифицированного наноструктурированным палладием

Изобретение относится к области электрохимии, а именно к устройству конструкционных элементов водородных насосов и кислородно-водородных топливных элементов, конкретно к устройству водородных электродов. Способ включает закрепление палладиевой мембраны толщиной 1-30 мкм, покрытой с двух сторон...
Тип: Изобретение
Номер охранного документа: 0002724609
Дата охранного документа: 25.06.2020
29.06.2020
№220.018.2cf4

Способ получения тетраалкинилсиланов

Изобретение относится к способам получения кремнийацетиленовых соединений, содержащих в молекуле четыре связи Si-C. Предложен способ получения тетраалкинилсиланов взаимодействием тетрахлорида кремния с 1-алкинами в среде 1,2-дихлорэтана в присутствии 120 мол. % трифлата цинка и 120 мол. %...
Тип: Изобретение
Номер охранного документа: 0002724877
Дата охранного документа: 26.06.2020
12.04.2023
№223.018.49f9

Способ определения депрессорно-диспергирующих присадок в дизельном топливе

Использование: для определения депрессорно-диспергирующих присадок в дизельном топливе. Сущность изобретения заключается в том, что пробоподготовку образца дизельного топлива (ДТ) осуществляют с использованием твердофазной экстракции на концентрирующих патронах «диапак-силикагель»,...
Тип: Изобретение
Номер охранного документа: 0002756706
Дата охранного документа: 04.10.2021
20.04.2023
№223.018.4a76

3-амино-4-арил-n-[(2z)-3-арил-4-фенил-1,3-тиазол-2(3н)-илиден]-5,6,7,8-тетрагидротиено[2,3-b]хинолин-2-карбоксамиды, способ их получения и применение в качестве антидотов 2,4-д на подсолнечнике

Группа изобретений относится к области органической химии и сельского хозяйства, а именно к новым синтетическим, биологически активным веществам из ряда гетероциклических соединений, применяемым для защиты растений подсолнечника от фитотоксического действия гербицида 2,4-дихлорфеноксиуксусной...
Тип: Изобретение
Номер охранного документа: 0002786236
Дата охранного документа: 19.12.2022
20.04.2023
№223.018.4a78

Способ получения производных 1-(2-фурил)-3,4-дигидроизохинолинов

Изобретение относится к органической химии, а точнее к способу получения новых гетероциклических соединений ряда 3,4-дигидроизохинолинов, которые могут представлять интерес как аналоги биологически активных соединений или полупродукты для их синтеза. Способ включает взаимодействие...
Тип: Изобретение
Номер охранного документа: 0002786872
Дата охранного документа: 26.12.2022
20.04.2023
№223.018.4a7a

2-{ [3-циано-4-r-5,6,7,8-тетрагидрохинолин-2-ил]тио} -n[(2z)-3-ar-4-фенил-1,3-тиазол-2(3н)-илиден]ацетамиды, способ их получения и применение в качестве антидотов 2,4-д на подсолнечнике

Группа изобретений относится к области органической химии и сельского хозяйства, а именно к новым синтетическим, биологически активным веществам из ряда гетероциклических соединений, применяемым для защиты растений подсолнечника от фитотоксического действия гербицида 2,4-дихлорорфеноксиуксусной...
Тип: Изобретение
Номер охранного документа: 0002786234
Дата охранного документа: 19.12.2022
20.04.2023
№223.018.4aa9

Способ диагностики рака легких

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для диагностики рака легкого. Проводят измерение уровней биомаркеров в образце выдыхаемого воздуха методом газовой хроматографии с масс-спектрометрическим детектированием (ГХ-МС) с предварительным...
Тип: Изобретение
Номер охранного документа: 0002784356
Дата охранного документа: 23.11.2022
Показаны записи 31-31 из 31.
12.04.2023
№223.018.49f9

Способ определения депрессорно-диспергирующих присадок в дизельном топливе

Использование: для определения депрессорно-диспергирующих присадок в дизельном топливе. Сущность изобретения заключается в том, что пробоподготовку образца дизельного топлива (ДТ) осуществляют с использованием твердофазной экстракции на концентрирующих патронах «диапак-силикагель»,...
Тип: Изобретение
Номер охранного документа: 0002756706
Дата охранного документа: 04.10.2021
+ добавить свой РИД