×
27.04.2019
219.017.3baf

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ЗАЩИТНОГО ПОКРЫТИЯ НА ЛОПАТКАХ МОНОКОЛЕСА ИЗ ТИТАНОВОГО СПЛАВА ОТ ПЫЛЕОБРАЗНОЙ ЭРОЗИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеабразивной эрозии и может быть использовано в авиационном двигателестроении и энергетическом турбостроению. Осуществляют упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток при энергии от 20 до 35 кэВ, дозой от 1,6⋅10 до 2,0⋅10 см. Затем наносят ионно-плазменное многослойное покрытие с заданным количеством пар слоев в виде слоя титана с ванадием толщиной от 0,15 до 0,25 мкм, и слоя соединений титана с ванадием и азотом толщиной от 1,2 до 2,3 мкм при общей толщине многослойного покрытия от 7,0 до 11,0 мкм. При нанесении покрытия на лопатки моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси, при этом обеспечивают ионно-имплантационную обработку всей поверхности лопатки и нанесение покрытия на всю поверхность лопаток. Нанесение титана и ванадия на лопатки производят одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия. 1 з.п. ф-лы.

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера лопаток моноколеса компрессора ГТД из титановых сплавов от эрозионного разрушения при одновременном повышении их выносливости и циклической долговечности.

Известен способ ионно-плазменного нанесения защитных покрытий на детали турбомашин (патент США №9,765,635. МПК F01D 5/14. Erosion and corrosion resistant protective coatings for turbomachinery. Опубл. 2017 г). Покрытие образуется путем конденсации материала при ионной бомбардировке из металло-газообразного плазменного потока. Причем кинетическая энергия ионов осажденных металлов превышает 5 эВ.

Известен также способ вакуумного ионно-плазменного нанесения покрытий на подложку в среде инертного газа, включающий создание разности электрических потенциалов между подложкой и катодом и очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, причем ионный поток и поток испаряемого материала, идущий от катода к подложке, экранируют, очистку проводят ионами инертного газа, после очистки экраны отводят и покрытие наносят в несколько этапов до получения требуемой толщины (Патент РФ 2192501, С23С 14/34, опубл. 10.11.2002).

Известен также способ нанесения ионно-плазменных покрытий на лопатки турбин, включающий последовательное осаждение в вакууме первого слоя из титана толщиной от 0,5 до 5,0 мкм, затем нанесение второго слоя нитрида титана толщиной 6 мкм (Патент РФ 2165475, МПК С23С 14/16, 30/00, С22С 19/05, 21/04, опубл. 20.04.2001).

Известен также способ нанесения ионно-плазменных покрытий на лопатки турбин, из титановых сплавов (патент РФ №2234556 МПК С23С 14/06, 2004.08.20), включающий последовательное упрочнение поверхности изделия путем ионной имплантации азота и проведение стабилизирующего отжига, и проведение, после ионной имплантации ионно-плазменное нанесение покрытия нитрида титана при токе разряда от 90 до 110 А, напряжении разряда от 50 до 60 В и давлении азота от 10-1 до 4⋅10-1 Па, при этом ионную имплантацию, нанесение покрытия и стабилизирующий отжиг осуществляют в одном вакуумном объеме.

Основным недостатком этих способов является недостаточно высокая эрозионной стойкости поверхности лопатки. Кроме того, при увеличении толщины покрытия (или каждого из слоев покрытия) происходит снижение адгезионной и усталостной прочности деталей с покрытиями, что ухудшает их ресурс и надежность.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ нанесения эрозионностойких покрытий на лопатки блиска газотурбинного двигателя из титановых сплавов, включающий упрочняющую обработку пера лопатки с последующим нанесением ионно-плазменного многослойного покрытия в виде заданного количества пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом (Патент РФ 2226227, МПК С23С 14/48, опубл. 27.03.2004).

Основным недостатком аналогов и прототипа является невозможность их использования для ионно-импалнтационной обработки и нанесения покрытий на лопатки моноколеса в результате образования «мертвых» зон, возникающих из-за затенения лопатками моноколеса друг друга, особенно в случае моноколес с широкохордными лопатками, что не обеспечивает для лопаток моноколес защиту от эрозии при одновременном повышении их выносливости и циклической прочности.

Задачей настоящего изобретения является создание такого многослойного покрытия, которое было бы способно эффективно защищать лопатки моноколес ГТД из титановых сплавов от эрозионного износа в условиях воздействия газовых потоков, содержащих абразивные частицы при одновременном обеспечении их высокой выносливости и циклической прочности.

Техническим результатом заявляемого способа является повышение стойкости лопаток моноколеса компрессора ГТД к эрозионному разрушению при одновременном обеспечении их высокой выносливости и циклической прочности за счет равномерной ионно-имплантационной обработки поверхности поверхности лопатки и равномерного нанесения на них эрозионностойкого покрытия.

Технический результат достигается за счет того, что в способе получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пыле абразивной эрозии, включающем упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом, в отличие от прототипа, в процессе нанесения покрытия на лопатки моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси с обеспечением ионно-имплантационной обработки всей поверхности лопаток и нанесения покрытия на всю поверхность лопаток моноколеса, причем ионно-имплантационную обработку лопаток моноколеса осуществляют ионами азота энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2, причем в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом используют ванадий, при этом нанесение титана и ванадия на лопатки моноколеса осуществляют одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия, причем слой титана с ванадием наносят толщиной от 0,15 мкм до 0,25 мкм, а слой соединений титана с ванадием и азотом наносят толщиной от 1,2 мкм до 2,3 мкм при общей толщине многослойного покрытия от 7,0 мкм до 11,0 мкм. Кроме того возможно также осуществлять нанесение слоев соединений титана с ванадием осуществляют в режиме ассистирования ионами аргона.

Для оценки эрозионной стойкости лопаток блиска были проведены следующие испытания. На образцы из титановых сплавов марок ВТ6, ВТ8, ВТ8 м, ВТ41, ВТ18у, ВТ31, ВТ9, ВТ22, ВТ25у были нанесены покрытия как по способу-прототипу (патент РФ 2226227, МПК С23С 14/48, опубл. 27.03.2004), согласно приведенным в способе-прототипе условиям и режимам нанесения, так и покрытия по предлагаемому способу.

Режимы нанесения покрытия по предлагаемому способу. Нанесение слоев соединений титана с ванадием осуществляли: с двух, одновременно работающих, протяженных электродуговых испарителей одного для ванадия, другого для титана. Расположение испарителей - периферийное, на цилиндрической стенке камеры установки, напротив друг друга, в зоне расположения лопаток моноколеса. Размеры испарителей 300×800 мм. Моноколесо, при ионно-имплантационной обработке и нанесения покрытия вращалось одновременно вокруг собственной продольной оси и поперечной оси, совпадающей с продольной, вертикально расположенной осью цилиндрической камеры установки, с одновременным совершением колебательных движений. Скорость вращения блиска относительно собственной оси составляла от 6 до 12 об/мин. Колебательные движения составляли по 45° по обе стороны от вертикали. Нанесение слоев соединений титана с ванадием осуществляли в режиме ассистирования ионами аргона, а слоев соединений титана с ванадием и азотом осуществляют в режиме ассистирования ионами азота. Ионно-имплантационную обработку проводили ионами азота. Для ионно-имплантационной обработки использовали протяженный генератор газовой плазмы, выполненный с возможностью обеспечения работы с азотом и имеющим размеры выходной апертуры 100×600 мм. В качестве упрочняющей обработки лопаток применялась обработка микрошариками.

Толщина слоя титана с ванадием: 0,1 мкм - неудовлетворительный результат (Н.Р.); 0,15 мкм - удовлетворительный результат (У.Р.); 0,25 мкм (У.Р.); 0,35 мкм (Н.Р.).

Толщина слоя соединений титана с ванадия и азотом: 0,9 мкм (Н.Р.); 1,2 мкм (У.Р.); 1,5 мкм (У.Р.); 2,3 мкм (У.Р.); 2,6 мкм (Н.Р.).

Общая толщина покрытия: 5,5 мкм (Н.Р.); 7,0 мкм (У.Р.); 9,0 мкм (У.Р.); 11,0 мкм (У.Р.); 13,0 мкм (Н.Р.).

Толщина покрытия, нанесенного по предлагаемому способу составляла от 7,0 мкм до 11,0 мкм, покрытия-прототипа от 0 мкм (в затененных зонах) до 11,0 мкм.

Ионно-имплантационная обработка азотом:

энергия - 18 кэВ (Н.Р.); 20 кэВ (У.Р.); 22 кэВ (У.Р.); 23 кэВ (У.Р.); 25 кэВ (У.Р.); 35 кэВ (У.Р.); 40 кэВ (Н.Р.);

доза - 1,4⋅1017 см-2(Н.Р.); 1,6⋅1017 см-2(У.Р.); 1,8⋅1017 см-2(У.Р.); 2,0⋅1017 см-2 (У.Р.); 2.4⋅1017 см-2 (Н.Р.);

Эрозионная стойкость поверхности образцов исследовалась по методике ЦИАМ (Технический отчет ЦИАМ Экспериментальное исследование износостойкости вакуумных ионно-плазменных покрытий в запыленном потоке воздуха 10790, 1987. - 37 с.) на пескоструйной установке 12Г-53 струйно-эжекторного типа. Для обдува использовался молотый кварцевый песок с плотностью р=2650 кг/м3, твердость HV=12000 МПа. Обдув производился при скорости воздушно-абразивного потока 195-210 м/с, температура потока 265-311 К, давление в приемной камере 0,115-0,122 МПа, время воздействия - 120 с, концентрация абразива в потоке до 2-3 г/м3. Результаты испытания показали, что эрозионная стойкость покрытий, полученных по предлагаемому способу, увеличилась по сравнению с покрытием-прототипом приблизительно в 5…6 раз.

Кроме того, были проведены испытания на выносливость и циклическую долговечность образцов - лопаток, вырезанных из моноколеса после его ионно-плазменной обработки и нанесения покрытий. Испытывались образцы из следующих марок титановых сплавов (ВТ6, ВТ8, ВТ8 м, ВТ41, ВТ18у, ВТ31, ВТ9, ВТ22, ВТ25у) на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (-1) образцов в исходном состоянии (без покрытия) составляет 430-440 МПа, у образцов, упрочненных по способу-прототипу - 430-445 МПа, а по предлагаемому способу - 460-480 МПа.

Таким образом, проведенные сравнительные испытания показали, что применение в способе получения многослойного защитного покрытия на лопатках моноколеса из титанового сплава от пылеабразивной эрозии следующих приемов: упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток моноколеса с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом; при нанесении покрытия на лопатки вращение моноколеса одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси, обеспечивающих ионно-имплантационную обработку всей поверхности лопаток и нанесение покрытия на всю поверхность лопаток моноколеса; ионно-имплантационную обработку лопаток моноколеса ионами азота при энергии от 20 кэВ до 35 кэВ, дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2; использование в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом ванадия; нанесение титана и ванадия на лопатки моноколеса одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия; нанесение слоя титана с ванадием толщиной от 0,15 мкм до 0,25 мкм; нанесение слоя соединений титана с ванадием и азотом толщиной от 1,2 мкм до 2,3 мкм; обеспечение общей толщины многослойного покрытия от 7,0 мкм до 11,0 мкм, позволяют достичь технического результата заявляемого изобретения - повысить стойкость лопаток моноколеса компрессора ГТД к эрозионному разрушению при одновременном обеспечении их высокой выносливости и циклической прочности за счет равномерной ионно-имплантационной обработки поверхности поверхности лопатки и равномерного нанесения на них эрозионностойкого покрытия.

Источник поступления информации: Роспатент

Показаны записи 101-110 из 146.
15.10.2019
№219.017.d5d3

Установка автоматического предотвращения взрыва газовоздушной смеси

Изобретение относится к установке автоматического предотвращения взрыва газовоздушной смеси. Техническим результатом является локализация газовоздушного облака вблизи колонны и снижение концентрации парогазовоздушной смеси. Установка автоматического предотвращения взрыва газовоздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002702788
Дата охранного документа: 11.10.2019
15.10.2019
№219.017.d5ea

Импульсный регулятор постоянного напряжения

Изобретение относится к области силовой электроники и может быть использовано, например, в источниках питания для многоуровневых автономных инверторов напряжения, электротехнологических установок микродугового оксидирования вентильных металлов и сплавов, электроэрозионной обработки сверхтвердых...
Тип: Изобретение
Номер охранного документа: 0002702762
Дата охранного документа: 11.10.2019
19.11.2019
№219.017.e3b8

Магнитоэлектродегидратор

Изобретение относится к аппаратам для обезвоживания и обессоливания нефти и очистки нефтепродуктов и может быть использовано в нефтяной и нефтеперерабатывающей промышленности. Магнитоэлектродегидратор содержит корпус, источник питания, электроды. Содержит герметично закрепленную с нижней...
Тип: Изобретение
Номер охранного документа: 0002706316
Дата охранного документа: 15.11.2019
24.11.2019
№219.017.e5bc

Способ штамповки заготовок с ультрамелкозернистой структурой из двухфазных титановых сплавов

Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок из титановых двухфазных сплавов. Заготовку подвергают термической обработке для получения дуплексной структуры с объемной долей зерен первичной α-фазы не более 30%. Затем пластически...
Тип: Изобретение
Номер охранного документа: 0002707006
Дата охранного документа: 21.11.2019
24.11.2019
№219.017.e60c

Статор электрической машины с жидкостным охлаждением (варианты)

Изобретение относится к области электромашиностроения, в частности к высокооборотным электрическим машинам. Технический результат - повышение эффективности охлаждения и снижение тепловой заметности электрических машин. Беспазовый статор электрической машины с жидкостным охлаждением содержит...
Тип: Изобретение
Номер охранного документа: 0002706802
Дата охранного документа: 21.11.2019
13.12.2019
№219.017.ed26

Способ формирования перфорационных отверстий на пере полой лопатки турбины из жаропрочного сплава

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий на лопатках из жаропрочных сплавов путем удаления дефектного слоя локальной электрохимической обработкой. Способ включает прожиг отверстий на пере...
Тип: Изобретение
Номер охранного документа: 0002708723
Дата охранного документа: 11.12.2019
18.12.2019
№219.017.ee62

Способ получения алюминиевых композитных проводов, армированных длинномерным волокном

Изобретение относится к области машиностроения и предназначено для изготовления длинномерных композитных изделий на основе керамических, борных или углеродных волокон. В способе получения алюминиевых композитных проводов, армированных длинномерным волокном, в котором волокно с катушек...
Тип: Изобретение
Номер охранного документа: 0002709025
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee6d

Электромеханический преобразователь энергии с зубцовой концентрической обмоткой

Изобретение относится к области электромашиностроения и может быть использовано в автономных системах электроснабжения, а также в авиационной отрасли в качестве стартер-генератора. Технический результат - минимизация колебаний частоты вращения и электромагнитного момента при номинальном режиме...
Тип: Изобретение
Номер охранного документа: 0002709024
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee94

Многофазная стержневая волновая обмотка статора асинхронного двигателя

Изобретение относится к области электротехники и может быть использовано при конструировании асинхронных электрических двигателей, питаемых от преобразователей частоты. Технический результат: повышение технологичности и улучшение охлаждения волновой обмотки. Шихтованный магнитопровод статора...
Тип: Изобретение
Номер охранного документа: 0002709095
Дата охранного документа: 16.12.2019
25.12.2019
№219.017.f211

Система электроснабжения летательного аппарата

Изобретение относится к области электромашиностроения и может быть использовано в системе электроснабжения гиперзвуковых и детонационных летательных аппаратов. Система электроснабжения летательного аппарата содержит приводной авиационный двигатель, генератор, выводные концы которого...
Тип: Изобретение
Номер охранного документа: 0002710037
Дата охранного документа: 24.12.2019
Показаны записи 101-110 из 141.
14.07.2019
№219.017.b422

Способ электролитно-плазменного удаления покрытий с деталей из легированных сталей и жаропрочных сплавов

Изобретение относится к технологии электролитно-плазменного удаления защитных алюминидных покрытий на основе никеля и/или кобальта с поверхностей лопаток турбомашин из легированных сталей и жаропрочных сплавов и может быть использовано в авиационном и энергетическом турбостроении при ремонте...
Тип: Изобретение
Номер охранного документа: 0002694397
Дата охранного документа: 12.07.2019
17.07.2019
№219.017.b538

Способ электролитно-плазменного полирования лопаток блиска турбомашин и эластичный чехол для его реализации

Изобретение относится к электролитно-плазменному полированию изделий из легированных сталей, тугоплавких и титановых сплавов и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей. Способ включает погружение обрабатываемых лопаток...
Тип: Изобретение
Номер охранного документа: 0002694684
Дата охранного документа: 16.07.2019
23.07.2019
№219.017.b751

Способ последовательного электролитно-плазменного полирования лопаток блиска турбомашин и рабочая емкость для его реализации

Изобретение относится к электролитно-плазменному полированию изделий из легированных сталей, тугоплавких и титановых сплавов и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых эксплуатационных свойств...
Тип: Изобретение
Номер охранного документа: 0002694935
Дата охранного документа: 18.07.2019
23.07.2019
№219.017.b78d

Способ электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002694941
Дата охранного документа: 18.07.2019
10.08.2019
№219.017.bd86

Материал прирабатываемого уплотнения турбомашины

Изобретение относится к материалам прирабатываемого уплотнения турбомашины. Материал содержит частицы порошкового наполнителя с размерами частиц порошка от 30 мкм до 100 мкм и порошковой добавки, адгезионно соединенные между собой в монолитный материал. В качестве материала наполнителя...
Тип: Изобретение
Номер охранного документа: 0002696985
Дата охранного документа: 08.08.2019
21.08.2019
№219.017.c1bd

Способ электрохимической обработки внутреннего канала металлической детали и электрод-инструмент для его реализации

Изобретение относится к области машиностроения и может быть использовано для обработки каналов путем электрохимического шлифования или полирования. Способ включает перемещение электрода-инструмента по внутренней поверхности канала, вдоль его оси при подключении детали к аноду, а...
Тип: Изобретение
Номер охранного документа: 0002697759
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1fb

Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей. Способ включает закрепление блиска на держателе, погружение лопаток блиска в электропроводящие пористые...
Тип: Изобретение
Номер охранного документа: 0002697757
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1ff

Способ изготовления перфорационных отверстий в полой лопатке турбины из жаропрочного сплава

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий в лопатках из жаропрочных сплавов путем удаления дефектного слоя электрохимической обработкой. Способ включает прожиг отверстий на пере лопатки...
Тип: Изобретение
Номер охранного документа: 0002697751
Дата охранного документа: 19.08.2019
24.08.2019
№219.017.c37a

Пальчиковое уплотнение

Изобретение относится к области турбо- и двигателестроения и может быть использовано в конструкциях газотурбинных двигателей и паровых турбин для уплотнения радиальных зазоров. Пальчиковое уплотнение содержит примыкающие друг к другу кольцевые детали, каждая из которых содержит равномерно...
Тип: Изобретение
Номер охранного документа: 0002698170
Дата охранного документа: 22.08.2019
07.09.2019
№219.017.c840

Способ последовательного электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин. Способ...
Тип: Изобретение
Номер охранного документа: 0002699495
Дата охранного документа: 05.09.2019
+ добавить свой РИД