×
23.04.2019
219.017.36c6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления. Новым является то, что испытания пробы смазочного материала проводят при одной или нескольких температурах, причем через равные промежутки времени пробу термостатированного смазочного материала взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности, часть пробы используют для определения кинематической вязкости. Вычисляют коэффициент термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, определяют показатель термоокислительной стабильности как произведение оптической плотности на индекс вязкости или как произведение коэффициента термоокислительной стабильности на индекс вязкости. Строят графические зависимости показателя термоокислительной стабильности от оптической плотности или от коэффициента термоокислительной стабильности, и по тангенсу угла наклона к оси абсцисс определяют влияние базовой основы смазочного материала, температуры испытания, продуктов окисления или температурной деструкции или совместно продуктов окисления и температурной деструкции на значение индекса вязкости, причем, чем больше тангенс угла наклона зависимости, тем больше значение индекса вязкости при заданной оптической плотности. Технический результат - повышение информативности способа определения термоокислительной стабильности и температурной стойкости смазочных материалов путем учета влияния температуры, процессов окисления, испарения, температурной деструкции и вязкостно-температурных характеристик. 3 з.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к технологии оценки качества жидких смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала постоянного объема в присутствии воздуха с перемешиванием, при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного смазочного материала и проводят оценку процесса окисления, причем испытания смазочного материала проводят, как минимум, при трех температурах ниже критической, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графические зависимости показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы Ковальский Б.И. и др., RU)

Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, принятый в качестве прототипа, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум, трех температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют кинематическую вязкость исходного и окисленного смазочного материала, определяют показатель термоокислительной стабильности, строят графические зависимости указанного показателя от параметров фотометрирования для выбранных температур и проводят оценку процесса окисления. Причем при фотометрировании определяют оптическую плотность, кинематическую вязкость определяют при температурах 40°С и 100°С, при этом определяют индекс вязкости и показатель относительного индекса вязкости как отношение индексов вязкости окисленного смазочного материала к товарному, а показатель термоокислительной стабильности определяют как отношение оптической плотности к показателю относительного индекса вязкости, по графическим зависимостям показателя термоокислительной стабильности от оптической плотности, построенным по результатам, полученным при выбранных температурах испытания, определяют влияние температуры и продуктов окисления на вязкостно-температурную характеристику испытуемого смазочного материала и выявляют наименьшую скорость изменения показателя термоокислительной стабильности при увеличении температуры окисления. (Патент РФ №2618581 С1, дата приоритета 18.02.2016, дата публикации 04.05.2017, авторы Ковальский Б.И. и др., RU, прототип).

Общим недостатком известного аналога и прототипа является ограниченная информативность о влиянии температурной области на вязкостно-температурные характеристики смазочных материалов и их влиянии на термоокислительную стабильность смазочных материалов и температурную стойкость.

Технической проблемой является повышение информативности способа определения термоокислительной стабильности и температурной стойкости смазочных материалов путем учета влияния температуры в широком диапазоне, процессов окисления, испарения, температурной деструкции и вязкостно-температурных характеристик.

Для решения технической проблемы предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют оптическую плотность, кинематическую вязкость при температурах 40°С и 100°C, определяют индекс вязкости товарного и окисленного смазочного материалов, показатель термоокислительной стабильности, проводят оценку процесса окисления. Согласно изобретению, новым является то, что испытания пробы смазочного материала проводят при одной или нескольких температурах, причем через равные промежутки времени пробу термостатированного смазочного материала взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности, часть пробы используют для определения кинематической вязкости, вычисляют коэффициент термоокислительной стабильности как сумму оптической плотности и коэффициента испаряемости, а показатель термоокислительной стабильности определяют как произведение оптической плотности на индекс вязкости или как произведение коэффициента термоокислительной стабильности на индекс вязкости, строят графические зависимости показателя термоокислительной стабильности от оптической плотности или от коэффициента термоокислительной стабильности, и по тангенсу угла наклона к оси абсцисс определяют влияние базовой основы смазочного материала, температуры испытания, продуктов окисления или температурной деструкции или совместно продуктов окисления и температурной деструкции на значение индекса вязкости, причем, чем больше тангенс угла наклона зависимости, тем больше значение индекса вязкости при заданной оптической плотности.

Согласно изобретению, при термостатировании смазочных материалов с перемешиванием и при одной температуре, выбранной в соответствии с базовой основой и группой эксплуатационных свойств, осуществляют сравнение различных масел одного назначения по показателям термоокислительной стабильности.

Согласно изобретению, при трех температурах термостатирования смазочного материала с перемешиванием определяют показатель термоокислительной стабильности и влияние температуры, продуктов окисления или продуктов окисления и испарения на индекс вязкости.

Согласно изобретению, при термостатировании без перемешивания в температурном диапазоне от 100 до 300°С определяют влияние продуктов температурной деструкции на индекс вязкости.

На фиг. 1 представлены графические зависимости показателя термоокислительной стабильности от оптической плотности моторных масел: 1 - минеральное Роснефть Optimum 10w-40SG/CD; частично-синтетические 2 - Роснефть Maximum 10w-40 SL/CF, 3 - Лукойл Люкс 5w-40SL/CF, полученные при температуре термостатирования 180°С;

На фиг. 2а и 2б - графические зависимости показателей термоокислительной стабильности Птос=D×ИВ от оптической плотности (а) и коэффициента термоокислительной стабильности (б) при испытании минерального моторного масла Лукойл Супер 15w-40 SG/CD в температурном интервале от 140 до 180°С.

На фиг. 3 - графическая зависимость показателя термоокислительной стабильности Птс=D×ИВ от оптической плотности при температурной деструкции в интервале температур от 140 до 300°С при испытании частично синтетического моторного масла Лукойл Люкс 5w-40 SL/CF

Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов предусматривает применение следующих средств контроля и испытания: прибора для определения процессов окисления; прибора для определения температурной деструкции; малообъемного вискозиметра для определения кинематической вязкости при температурах 40°С и 100°С; фотометрического устройства для прямого фотометрирования термостатированных смазочных материалов при толщине фотометрируемого слоя в 2 мм и электронных весов для измерения массы испарившегося смазочного материала при термостатировании.

Предлагаемый способ может быть реализован, в частности, в трех вариантах.

Первый вариант предусматривает термостатирование смазочных материалов при одной температуре, выбранной в соответствии с базовой основой (минеральное, трансмиссионное, гидравлическое, индустриальное) и группы эксплуатационных свойств. Применяется для сравнения различных масел одного назначения по показателям термоокислительной стабильности.

Второй вариант предусматривает применение способа при трех температурах термостатирования, что позволяет определить влияние температуры, продуктов окисления или окисления и испарения на индекс вязкости.

Третий вариант предусматривает применение способа в температурном диапазоне температур от 100 до 300°С, что позволяет определить влияние продуктов температурной деструкции на индекс вязкости.

Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов осуществляется следующим образом для всех трех этапов. Пробу исследуемого смазочного материала постоянной массы, например 100±0,1, нагревают до выбранной температуры или диапазона температур в зависимости от базовой основы с перемешиванием с помощью механической мешалки для смешивания с кислородом воздуха. Причем при исследовании температурной стойкости (деструкции) перемешивание исключается. Температура и частота вращения механической мешалки поддерживаются автоматически.

Через равные промежутки времени пробу термостатированного масла взвешивают, определяют массу испарившегося смазочного материала, отбирают часть пробы для прямого фотометрирования и определения оптической плотности D

где 300 - показания фотометра при незаполненной маслом кювете, мкА;

П - показания фотометра при заполненной термостатированным маслом кювете, мкА.

Часть пробы используют для определения кинематической вязкости при температурах 40 и 100°С. Затем по ГОСТ 25371-97 (ИСО 2909-81) определяют индекс вязкости.

В процессе термостатирования смазочного материала изменяется оптическая плотность и испаряемость, влияющие на кинематическую вязкость и соответственно индекс вязкости, поэтому термоокислительную стабильность определяют коэффициентом Ктос, выраженным суммой:

где KG - коэффициент испаряемости

где m - масса испарившегося смазочного материала за время испытания t, г;

М - масса пробы до испытания, г.

Коэффициент Ктос учитывает только процессы окисления и испарения и не учитывает влияние продуктов этих процессов на кинематическую вязкость, поэтому в качестве показателя термоокислительной стабильности Птос предложено произведение:

или

Первое произведение учитывает эмпирическую связь между концентрацией продуктов окисления и индексом вязкости, а второе учитывает эмпирическую связь между процессами окисления, испарения и индексом вязкости.

Испытания смазочных материалов в первом варианте (при одной температуре) продолжают до достижения оптической плотности значений, равных 0,6-0,65.

Испытанию подвергались моторные масла: минеральное Роснефть Optimum 10w-40 SL/CF; частично синтетические Роснефть Maximum 10w-40 SL/CF и Лукойл Люкс 5w-40 SL/CF Результаты испытания сведены в таблицу 1 и представлены на фиг. 1. Данные зависимости описываются линейными уравнениями для масел:

Минерального Роснефть Optimum 10w-40 SG/CD (кривая 1)

Частично синтетических: Роснефть Maximum 10w-40 SL/CF (кривая 2)

Лукойл Люкс 5w-40SL/CF (кривая 3)

Анализ полученных формул (5-7) показывает, что при равном значении оптической плотности исследуемых моторных масел скорость изменения показателя Птос зависит от индекса вязкости, и она установлена более высокой для частично синтетических моторных масел. Кроме того, показатель термоокислительной стабильности может служить критерием для назначения группы эксплуатационных свойств по классификации API. Показано, что классификация минерального масла самая низкая из исследованных масел SG/SD и скорость изменения показателя термоокислительной стабильности Птос также низкая - 137,25, а классификация частично синтетических масел назначена производителями SL/CF, и скорость изменения показателей термоокислительной стабильности составила 141,03 и 148,65.

Испытания смазочных материалов по второму варианту (при трех температурах) проводили по вышеописанной технологии. Результаты исследования представлены в таблице 2 и на фиг. 2а и 2б.

Согласно данных фиг. 2а и 2б зависимости показателя термоокислительной стабильности от оптической плотности и от коэффициента термоокислительной стабильности описываются линейными уравнениями:

Уравнение (8) характеризует эмпирическую связь между продуктами окисления и индексом вязкости, а уравнения (9) - эмпирическую связь между продуктами окисления, испарения и индексом вязкости. Показано, что независимо от температуры испытания скорости изменения показателей термоокислительной стабильности и практически равны и составляют 114,29 и 113,64. Поэтому для сравнения моторных масел можно применять любой из приведенных показателей.

Испытание смазочных материалов по третьему варианту предусматривает изменение температуры в пределах от 140 до 300°С, при этом ограничиваются температурой, при которой оптическая плотность достигнет значения 0,6-0,7.

Продолжительность испытания составляет 8 часов при каждой температуре, причем термостатирование происходит без перемешивания испытуемого смазочного материала, а технология описана выше. Результаты испытания частично синтетического моторного масла Лукойл Люкс 5W-40 SL\CF сведены в таблицу 3, а также представлены на фиг. З. зависимостью показателя температурной стойкости от оптической плотности

Согласно полученных данных, зависимость показателя температурной стойкости от оптической плотности исследуемого масла описывается линейным уравнением:

Коэффициент 150 характеризует скорость изменения показателя температурной стойкости при увеличении оптической плотности.

Проведенными исследованиями смазочных материалов при одной температуре испытания установлено различие показателей термоокислительной стабильности , что позволяет их сравнивать. При испытании смазочнного материала при трех температурах, установлено, что показатель термоокислительной стабильности не зависит от температуры испытания и может определяться с применением оптической плотности ли коэффициента термоокислительной стабильности .

Смазочные материалы, термостатированные в широком интервале температур без перемешивания, характеризуют их температурную стойкость и определяются показателем температурной стойкости , что позволяет их сравнивать.

Предлагаемое техническое решение позволяет повысить информативность способа определения термоокислительной стабильности и температурной стойкости смазочных материалов за счет учета влияния температуры, продуктов окисления, испарения и температурной деструкции на оптические свойства и индекс вязкости, а также промышленно применимо, так как позволяет сравнивать смазочные материалы различной базовой основы, что имеет практическое значение при их выборе и совершенствовании системы классификации по группам эксплуатационных свойств и вязкостно-температурным характеристикам.


СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ТЕМПЕРАТУРНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 324.
13.01.2017
№217.015.682d

Сплав припойный на основе палладия 850 пробы

Изобретение может быть использовано при изготовлении ювелирных изделий из сплавов палладия 850 пробы с использованием пайки. Сплав припойный на основе палладия 850 пробы содержит компоненты в следующем соотношении, мас.%: палладий 85,0-85,5, медь 11,0-12,0, бор 3,4-3,6. Сплав имеет пониженную...
Тип: Изобретение
Номер охранного документа: 0002591900
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.693c

Асфальтобетонная смесь

Изобретение относится к дорожному строительству, а именно к составам асфальтобетонной смеси. Асфальтобетонная смесь включает вяжущее на битумной основе и минеральную часть, содержащую щебень, шлаковый песок размером 0-5 мм и минеральный порошок, при этом вяжущее дополнительно включает серу при...
Тип: Изобретение
Номер охранного документа: 0002591938
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a9a

Полимерная композиция для пенопласта

Изобретение относится к многоцелевой полимерной композиции для получения карбамидного пенопласта с расширенным диапазоном функционально-технологических возможностей, используемого для защиты от промерзания карьеров, сырьевых материалов, как противопожарные средство, а также при обработке и...
Тип: Изобретение
Номер охранного документа: 0002593160
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7231

Балка с перфорированной стенкой

Изобретение относится к области строительства, в частности к перфорированной балке конструкций покрытий и перекрытий здания. Технический результат заключается в повышении несущей способности балки. Балка с перфорированной стенкой содержит соединенные между собой два элемента с тавровыми...
Тип: Изобретение
Номер охранного документа: 0002598101
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7309

Способ разработки обводненных россыпных месторождений полезных ископаемых

Изобретение относится к горнодобывающей промышленности. Техническим результатом является повышение производительности горнодобывающего оборудования и увеличение продолжительности добычного сезона. Способ включает подготовительные и добычные работы, обогащение и отвалообразование и до...
Тип: Изобретение
Номер охранного документа: 0002598100
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7332

Способ разработки обводненных россыпей драгами

Изобретение относится к горнодобывающей промышленности, в частности к разработке обводненных россыпных месторождений и техногенных накоплений минерального сырья в условиях продолжительной отрицательной температуры. Техническим результатом является продление добычного сезона драги при разработке...
Тип: Изобретение
Номер охранного документа: 0002598099
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7445

Рабочее оборудование экскаватора-драглайна

Изобретение относится к землеройной технике. Рабочее оборудование экскаватора-драглайна включает стрелу с головными блоками, ковш, лебедки с системой канатов. Стрела снабжена двумя симметрично установленными относительно ковша захватами, выполненными с возможностью перемещения вдоль...
Тип: Изобретение
Номер охранного документа: 0002597895
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7453

Рабочее оборудование экскаватора-драглайна

Изобретение относится к землеройной технике и может быть использовано преимущественно в области горной промышленности при разработке месторождений полезных ископаемых открытым способом. Рабочее оборудование экскаватора-драглайна включает стрелу с ковшом, подвешенным к ней с помощью подъемных...
Тип: Изобретение
Номер охранного документа: 0002597896
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7610

Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения качества смазочных масел, в частности к определению влияния продуктов окисления на индекс вязкости. Способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с...
Тип: Изобретение
Номер охранного документа: 0002598624
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7646

Способ открытой разработки месторождений полезных ископаемых с использованием экскаватора-кранлайна

Изобретение относится к горнодобывающей промышленности. Техническим результатом является сокращение рабочего цикла на время поворота ковша к месту его разгрузки, что ведет к увеличению производительности. Способ включает отработку уступов заходками, отличается тем, что на откосе добычного...
Тип: Изобретение
Номер охранного документа: 0002598609
Дата охранного документа: 27.09.2016
Показаны записи 31-40 из 43.
01.03.2019
№219.016.cf13

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа отбирают пробы отработавших масел, делят на две части, первую часть подвергают фотометрированию, определяют коэффициент поглощения светового потока, вторую часть пробы постоянной массы...
Тип: Изобретение
Номер охранного документа: 0002451293
Дата охранного документа: 20.05.2012
20.03.2019
№219.016.e969

Противопаразитарное средство и способ его применения для лечения гельминтозов жвачных животных

Группа изобретений относится к области ветеринарии. Средство содержит, мас.%: универм - 20.0; альбендазол - 2.5; натриевая соль карбоксиметилцеллюлозы - 0.5 и вода остальное. Средство вводят перорально в дозе 0.8-1.0 мл/кг массы животного, однократно, индивидуально. Заявленная группа...
Тип: Изобретение
Номер охранного документа: 0002469716
Дата охранного документа: 20.12.2012
19.04.2019
№219.017.33f1

Устройство для разрушения снежно-ледяных образований на дорожных покрытиях

Изобретение относится к устройствам для разрушения снежно-ледяных образований и гололеда на автодорогах, аэродромах и тому подобных сооружениях. Устройство содержит горизонтальный приводной вал, на котором смонтированы тяги, каждая из которых состоит из двух частей, одна из которых связана с...
Тип: Изобретение
Номер охранного документа: 0002463407
Дата охранного документа: 10.10.2012
25.04.2019
№219.017.3b15

Система улавливания паров нефти и нефтепродуктов при наливе-сливе и транспортировке в железнодорожных цистернах

Изобретение относится к нефтегазовой промышленности, в частности к установкам улавливания легких фракций нефти и нефтепродуктов при сливо-наливных операциях и транспортировании. Система улавливания паров нефти и нефтепродуктов при наливе-сливе и транспортировке в железнодорожных цистернах...
Тип: Изобретение
Номер охранного документа: 0002685672
Дата охранного документа: 22.04.2019
29.05.2019
№219.017.67fe

Устройство для испытания трущихся материалов и масел

Изобретение относится к устройствам для оценки смазывающих свойств масел и испытания различных материалов, в частности оно может быть использовано при подборе и оценке противоизносных свойств различных смазок. Технический результат - повышение точности передачи нагрузки на образец и увеличение...
Тип: Изобретение
Номер охранного документа: 0002428677
Дата охранного документа: 10.09.2011
19.06.2019
№219.017.899b

Способ определения температурной стойкости смазочных масел

Изобретение относится к технологии испытания смазочных материалов. При осуществлении способа отбирают пробу масла, делят ее на равные части, каждую из которых нагревают, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину и каждую часть пробы...
Тип: Изобретение
Номер охранного документа: 0002471187
Дата охранного документа: 27.12.2012
27.07.2019
№219.017.b9c4

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Технический результат заключается в снижении трудоемкости за счет сокращения времени испытания при выбранной температуре в связи с возможностью использования результатов, полученных...
Тип: Изобретение
Номер охранного документа: 0002695704
Дата охранного документа: 25.07.2019
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
12.09.2019
№219.017.ca49

Противопаразитарная композиция и способ ее применения для лечения паразитозов жвачных животных

Группа изобретений относится к ветеринарной паразитологии и представляет собой противопаразитарную композицию, включающую супрамолекулярный комплекс альбендазола с арабиногалактаном, супромолекулярный комплекс ивермектина с арабиногалактаном, натриевую соль карбоксиметилцеллюлозы (бланоза) и...
Тип: Изобретение
Номер охранного документа: 0002699799
Дата охранного документа: 11.09.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
+ добавить свой РИД