×
19.04.2019
219.017.3421

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СВЕРХПЛАСТИЧНЫХ ЗАГОТОВОК ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ АЛЮМИНИЙ-МАГНИЙ-СКАНДИЙ

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для оптимизации технологического процесса сверхпластической формовки изделий сложной формы. Способ включает отливку слитка, получение из него заготовки равноканальным угловым прессованием с противодавлением. Сокращение продолжительности формообразующих операций, осуществляемых в режиме высокоскоростной сверхпластичности, а также сокращение времени нагрева заготовки обеспечивается за счет того, что перед отливкой слитка расплав нагревают до 760-800°С и выдерживают при этой температуре 0,5-1.0 ч, слиток отливают полунепрерывным литьем в кристаллизатор скольжения, отлитый слиток отжигают при температуре 360-380°С в течение 3-8 ч, получают из слитка заготовку прямоугольного сечения квадратную в плане с отношением толщины к ширине от 0,17 до 0,33, деформацию полученной из слитка заготовки прессованием осуществляют при угле пересечения каналов 90° при температуре 305-325°С с числом проходов от 4 до 8, соответствующим истинной деформации от ~4 до ~8, с величиной противодавления, равной 30-40% от величины приложенного давления, с поворотом заготовки после каждого прохода на 90° относительно оси, перпендикулярной большой грани заготовки и проходящей через центр заготовки, затем заготовку подвергают прокатке при температуре предшествующего прессования с суммарным обжатием 80-95% при температуре рабочих валков прокатного стана, равной температуре прокатки, 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к способам получения сверхпластичных заготовок из алюминиевых сплавов на основе системы алюминий-магний-скандий (Al-Mg-Sc), содержащих также цирконий или цирконий и марганец, применяемых для сверхпластической формовки изделий сложной формы, а также в качестве конструкционного материала.

Известно, что алюминиевые сплавы при повышенных температурах и сравнительно низких скоростях деформации становятся сверхпластичными, если в них тем или иным способом получена ультрамелкозернистая структура с размером равноосных зерен менее 10 мкм (Г.Б.Строганов, О.А.Кайбышев, О.Х.Фаткуллин. Сверхпластичность при обработке материалов давлением. М.ОНТИ, МАТИ, 2000, С.94). Известно также, что существенное измельчение зерна может быть достигнуто методами интенсивной пластической деформации, в частности равноканальным угловым прессованием (РКУ-прессованием) (Валиев. Р.З. Развитие равноканального углового прессования для получения ультрамелкозернистых металлов и сплавов. Металлы. 2004. №1. С.15-21). Известен способ получения заготовок с ультрамелкозернистой структурой с размером зерен ~1 мкм из алюминиевого сплава, содержащего, мас.%, 4Mg-1,5Mn-0,4Zr-0,4Sc, путем РКУ-прессования литой заготовки (Добаткин С.В., Захаров В.В., Эстрин Ю., Ростова Т.Д., Уколова О.Г., Чиркова А.В. Повышение прочности и пластичности Al-Mg-Mn-сплавов, легированных цирконием и скандием, при равноканальном угловом прессовании. Технология легких сплавов. 2009. №3. С.46-59).

Известен способ получения сверхпластичных заготовок из алюминиевого сплава на основе системы Al-Mg-Sc, содержащего, мас.%, 4,5Mg-0,22Sc-0,15Zr, близкий по техническому решению и назначению к предлагаемому изобретению, включающий отливку слитка в металлическую изложницу, получение из слитка заготовки квадратного сечения, деформацию заготовки РКУ-прессованием при угле пересечения каналов 90° при температуре 200°С с числом проходов от 6 до 8 и поворотом заготовки после каждого прохода вокруг ее оси на 90° (Перевезенцев В.Н., Чувильдеев В.Н., Копылов В.И., Сысоев А.Н., Лэнгдон Т.Дж. Высокоскоростная сверхпластичность сплавов системы Al-Mg-Sc-Zr. Металлы. 2004. №1. С.36-43). Основным недостатком этого способа является низкая скорость РКУ-прессования (~0.4 мм/с), а также невысокие показатели сверхпластичности заготовок, полученных этим способом, при пониженных температурах.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ получения сверхпластичных заготовок из алюминиевого сплава на основе системы Al-Mg-Sc, включающий:

- отливку слитка малого размера;

- получение из слитка заготовки круглого сечения;

- деформацию РКУ - прессованием при угле пересечения каналов 110° при температуре 200°С с восемью проходами, что соответствует истинной деформации ~7,2, с противодавлением (С.В.Добаткин, В.В.Захаров, В.Н.Перевезенцев, Т.Д.Ростова, В.И.Копылов, Г.И.Рааб. Механические свойства субмикрокристаллических сплавов Al-Mg (АМг6) и Al-Mg-Sc (01570). Технология легких сплавов. 2010. №1. С.74-84).

Главным недостатком этого способа является то, что сверхпластичные заготовки из алюминиевых сплавов на основе системы Al-Mg-Sc, полученные этим способом, имеют невысокие показатели сверхпластичности при высоких скоростях пластической деформации (выше 10-2 с-1), представляющих наибольший интерес для сверпластической формовки.

Задачей предлагаемого изобретения является получение сверхпластичных заготовок из алюминиевых сплавов на основе системы Al-Mg-Sc с улучшенными показателями сверхпластичности при высоких скоростях пластической деформации.

Решение поставленной задачи достигается тем, что в способе получения сверхпластичных заготовок из алюминиевых сплавов на основе системы Al-Mg-Sc, включающем отливку слитка, получение из слитка заготовки, деформацию полученной из слитка заготовки РКУ-прессованием с противодавлением, перед отливкой слитка расплав перегревают до температуры 760-800°С и выдерживают при этой температуре 0,5-1 ч, слиток отливают полунепрерывным литьем в кристаллизатор скольжения, отлитый слиток отжигают при температуре 360-380°С в течение 3-8 ч, получают из слитка заготовку прямоугольного сечения квадратную в плане с отношением толщины к ширине от 0,17 до 0,33, деформацию полученной из слитка заготовки РКУ-прессованием с противодавлением осуществляют при угле пересечения каналов 90° при температуре 305-325°С с числом проходов от 4 до 8, что соответствует истинной деформации от ~4 до ~8, с величиной противодавления, равной 30-40% от величины приложенного давления, с поворотом заготовки после каждого прохода на 90° относительно оси, перпендикулярной большой грани заготовки и проходящей через центр заготовки, затем заготовку подвергают прокатке при температуре предшествующего РКУ-прессования с суммарным обжатием 80-95% при температуре рабочих валков прокатного стана, равной температуре прокатки.

Предлагаемый способ отличается от известного тем, что перегрев расплава производят до температуры 760-800°С и выдерживают при этой температуре 0,5-1 ч, слиток отливают полунепрерывным литьем в кристаллизатор скольжения, отлитый слиток отжигают при температуре 360-380°С в течение 3-8 ч, получают из слитка заготовку прямоугольного сечения, квадратную в плане, с отношением толщины к ширине от 0,17 до 0,33, деформацию полученной из слитка заготовки РКУ-прессованием с противодавлением осуществляют при угле пересечения каналов 90° при температуре 305-325°С с числом проходов от 4 до 8, что соответртвует истинной деформации от ~4 до ~8, с величиной противодавления, равной 30- 40% от величины приложенного давления, с поворотом заготовки после каждого прохода на 90° относительно оси, перпендикулярной большой грани заготовки и проходящей через центр заготовки, затем заготовку подвергают прокатке при температуре предшествующего РКУ-прессования с суммарным обжатием 80-95% при температуре рабочих валков прокатного стана, равной температуре прокатки.

Технический результат - получение сверхпластичных заготовок с улучшенными показателями сверхпластичности при высоких скоростях пластической деформации.

При выдержке в течение 0,5-1 ч перегретого до 760-800°С расплава повышается степень его гомогенности за счет растворения первичных интерметаллидов, входящих в состав компонентов шихты. При отливке слитка методом полунепрерывного литья в кристаллизатор скольжения, предусматривающем обязательное интенсивное охлаждение слитка водой, обеспечивается скорость охлаждения металла в интервале температур кристаллизации, позволяющая зафиксировать скандий и цирконий, входящие в состав сплава, в пересыщенном твердом растворе, который распадается при отжиге слитка при 360-380°С в течение 3-8 ч с образованием дисперсных вторичных когерентных выделений фазы Al3(Sc, Zr) размером 5-10 нм, тормозящих рост зерен при повышенных температурах. При РКУ-прессовании при угле пересечения каналов 90° полученной из слитка заготовки прямоугольного сечения квадратной в плане с отношением толщины к ширине от 0,17 до 0,33 при температуре 305-325°С с числом проходов от 4 до 8, что соответствует истинной деформации от ~4 до ~8, с противодавлением, равным 30-40% от приложенного давления, с поворотом заготовки после каждого прохода на 90° относительно оси, перпендикулярной большой грани заготовки и проходящей через центр заготовки, происходит измельчение зерен и формируется однородная по сечению заготовки структура с размером зерен ~1 мкм и их объемной долей ~0,9, при этом в материале сохраняются нерекристаллизованные области, представляющие собой участки исходных крупных зерен. При прокатке продеформированной РКУ-прессованием заготовки при температуре предшествующего РКУ-прессования с суммарным обжатием 80-95% при температуре рабочих валков прокатного стана, равной температуре прокатки, дополнительно измельчаются нерекристаллизованные области исходных зерен, сохранившиеся после РКУ-прессования, в результате чего объемная доля ультрамелких зерен увеличивается до 0,98, а их средний размер сохраняется на уровне 1 мкм.

Пример осуществления способа.

С использованием в качестве шихтовых материалов алюминия, магния и лигатур Al-Sc, Al-Zr и Al-Mn готовили расплав алюминиевого сплава на основе системы Al-Mg-Sc, содержащего, мас.%, 5Mg-0,2Sc-0,08Zr-0,18Mn. Перед отливкой слитка расплав перегревали до 780°С и выдерживали при этой температуре 1 ч. Затем методом полунепрерывного литья в кристаллизатор скольжения отливали слиток прямоугольного сечения, который подвергали отжигу при 370°С в течение 8 ч. Из отожженного слитка вырезали заготовку прямоугольного сечения, квадратную в плане, с размером сечения 34×152 мм, что соответствовало отношению толщины заготовки к ее ширине, равному 0,22, и размером в плане 152×152 мм, которую подвергли РКУ-прессованию при угле пересечения каналов 90° при 310°С за 8 проходов давлением 12 кгс/мм2 с противодавлением, равным 4,8 кгс/мм2, что составляло 40% от приложенного давления, с поворотом заготовки после каждого прохода на 90° относительно оси, перпендикулярной большой грани заготовки с размером 152×152 мм и проходящей через ее центр, после чего заготовку, продеформированную РКУ-прессованием, подвергли прокатке при температуре предшествующего РКУ-пресования 310°С до толщины 4 мм при температуре рабочих валков прокатного стана, равной температуре прокатки 310°С, суммарное обжатие при этом составляло 88,2%. Полученную сверхпластичную заготовку испытывали на растяжение на плоских образцах с размером рабочей части 1,5×3×6 мм при температурах 400 и 450°С и скоростях деформации 5×10-2 с-1 и 1,4×10-1 с-1. В качестве показателя сверхпластичности взяли величину относительного удлинения образцов до разрушения. Также испытывали сверхпластичную заготовку из этого же сплава, полученную по известному способу. Сравнительные результаты испытаний приведены в таблице.

Способ получения сверхпластичной заготовки Условия испытаний на растяжение Показатель сверхпластичности
Температура, °С Скорость деформации, с-1 Относительное удлинение до разрушения, %
Предлагаемый 400 5×10-2 1800
1,4×10-1 1400
450 5×10-2 2300
1,4×10-1 2200
Известный 400 5×10-2 800
1,4×10-1 800
450 5×10-2 1200
1,4×10-1 1000

Из таблицы видно, что производство сверхпластичных заготовок из алюминиевых сплавов на основе системы Al-Mg-Sc по предлагаемому способу позволяет улучшить показатели сверхпластичности при высоких скоростях деформации. Относительное удлинение до разрушения - основной показатель сверхпластичности повышается примерно в 2 раза.

Предлагаемый способ, реализуемый в промышленном производстве, позволяет оптимизировать технологический процесс сверхпластической формовки изделий сложной формы из алюминиевых сплавов на основе системы Al-Mg-Sc за счет сокращения продолжительности формообразующих операций, осуществляемых в режиме высокоскоростной сверхпластичности, а также за счет сокращения времени нагрева заготовки. Сверхпластичные заготовки из алюминиевых сплавов на основе системы Al-Mg-Sc, получаемые предлагаемым способом, могут быть использованы в качестве конструкционного материала для изделий космической техники.

Способ получения сверхпластичных заготовок из алюминиевых сплавов на основе системы алюминий-магний-скандий, включающий отливку слитка, получение из слитка заготовки, деформацию полученной из слитка заготовки равноканальным угловым прессованием с противодавлением, отличающийся тем, что перед отливкой слитка расплав нагревают до температуры 760-800°С и выдерживают при этой температуре 0,5-1,0 ч, слиток отливают полунепрерывным литьем в кристаллизатор скольжения, отлитый слиток отжигают при температуре 360-380°С в течение 3-8 ч, получают из слитка квадратную в плане заготовку прямоугольного сечения с отношением толщины к ширине от 0,17 до 0,33, деформацию заготовки осуществляют равноканальным угловым прессованием с противодавлением при угле пересечения каналов 90° и температуре 305-325°С с числом проходов от 4 до 8, соответствующим истинной деформации от ~4 до ~8, и с величиной противодавления, равной 30-40% от величины приложенного давления, с поворотом заготовки после каждого прохода на 90° относительно оси, перпендикулярной большой грани заготовки и проходящей через центр заготовки, затем заготовку подвергают прокатке с суммарным обжатием 80-95% при температуре предшествующего равноканального углового прессования и температуре рабочих валков прокатного стана, равной температуре прокатки.
Источник поступления информации: Роспатент

Показаны записи 41-46 из 46.
19.04.2019
№219.017.31f7

Производное 3-(2,2,2-триметилгидразиний) пропионата - 5-бромникотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее противоишемической активностью

Изобретение относится к области фармацевтики и медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний) пропионата - бромникотинату 3-(2,2,2-триметилгидразиний) пропионата калия, (СН)NНСНСНСООКRСОО где , обладающему повышенной противоишемической...
Тип: Изобретение
Номер охранного документа: 0002458690
Дата охранного документа: 20.08.2012
19.04.2019
№219.017.31f8

Производное 3-(2,2,2-триметилгидразиний) пропионата - никотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно - к новому химическому соединению, производное 3-(2,2,2-триметилгидразиний) пропионата - никотинат 3-(2,2,2-триметилгидразиний) пропионат калия, (CH)NNHCHCHCOOKRCOO, где , обладающее противоишемической активностью. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002458054
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.3216

Производное 3-(2,2,2-триметилгидразиний)пропионата - глицинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата - глицинату 3-(2,2,2-триметилгидразиний) пропионата калия, (CH3)3NNHCH2CH2COOKRCOO где , обладающему противоишемической активностью. 1 табл.
Тип: Изобретение
Номер охранного документа: 0002457198
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3217

Производное 3-(2,2,2-триметилгидразиний)пропионата - 5- гидрокисиникотинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата - 5-гидрокисиникотинат 3-(2,2,2-триметилгидразиний)пропионат калия, (CH3)3NHCH2CH2COOKRCOO, где обладающее противоишемической активностью. Технический...
Тип: Изобретение
Номер охранного документа: 0002457202
Дата охранного документа: 27.07.2012
29.06.2019
№219.017.9fc2

Способ прогнозирования формирования хронического лимфолейкоза и развития сочетанных осложнений в дебюте заболевания

Изобретение относится к медицине и описывает способ прогнозирования формирования хронического лимфолейкоза и развития сочетанных осложнений в дебюте заболевания, включающий выделение ДНК из периферической венозной крови, отличающийся тем, что проводят анализ полиморфизма гена рецептора фактора...
Тип: Изобретение
Номер охранного документа: 0002458349
Дата охранного документа: 10.08.2012
29.06.2019
№219.017.a1af

Способ прогнозирования интенсивности и резистентности болевого синдрома после операции видеолапароскопической холецистэктомии у больных хроническим калькулезным холециститом

Изобретение относится к области медицины и касается способа прогнозирования интенсивности и резистентности болевого синдрома после операции видеолапароскопической холецистэктомии у больных хроническим калькулезным холециститом. Сущность способа заключается в том, что выделяют ДНК из...
Тип: Изобретение
Номер охранного документа: 0002461830
Дата охранного документа: 20.09.2012
Показаны записи 41-50 из 60.
20.05.2019
№219.017.5d16

Способ термомеханической обработки жаропрочной стали мартенситного класса

Изобретение относится к области металлургии, а именно к термомеханической обработке жаропрочной хромистой стали мартенситного класса, применяемой для изготовления элементов котлов и паропроводов, а также паровых турбин энергетических установок с рабочей температурой пара до 650°С. Для...
Тип: Изобретение
Номер охранного документа: 0002688017
Дата охранного документа: 17.05.2019
19.06.2019
№219.017.86dc

Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных конструкций теплообменников космических...
Тип: Изобретение
Номер охранного документа: 0002384637
Дата охранного документа: 20.03.2010
22.06.2019
№219.017.8e61

Способ получения листов высокопрочных аустенитных марганцовистых сталей

Изобретение относится к области металлургии. Для повышения прочности и пластичности с сохранением допустимых значений показателя пластичности аустенитную сталь с содержанием марганца более 15 мас.%, алюминия не менее 1,5 мас.% и обладающей TWIP-эффектом подвергают предварительному...
Тип: Изобретение
Номер охранного документа: 0002692151
Дата охранного документа: 21.06.2019
27.06.2019
№219.017.9923

Способ получения объемных заготовок высокомарганцевой стали с рекристаллизованной мелкозернистой структурой

Изобретение относится к области металлургии, а именно к технологии получения заготовок из высокомарганцевых сталей аустенитного класса с мелкозернистой структурой, используемых при изготовлении силовых элементов кузова автомобиля. Способ включает гомогенизационный отжиг при температуре 1423 К в...
Тип: Изобретение
Номер охранного документа: 0002692539
Дата охранного документа: 25.06.2019
29.06.2019
№219.017.9cf8

Деформируемый термически неупрочняемый сплав на основе алюминия и изделие из него

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, предназначенным для использования в качестве конструкционного материала в различных областях техники: судостроении, авиакосмической и нефтегазодобывающей...
Тип: Изобретение
Номер охранного документа: 0002387725
Дата охранного документа: 27.04.2010
03.08.2019
№219.017.bc6d

Способ обработки жаропрочной мартенситной стали

Изобретение относится к области металлургии, а именно к технологии обработки жаропрочных мартенситных сплавов, применяемых в энергетической промышленности в качестве конструкционных материалов для производства котлов, роторов и другого оборудования тепловых электростанций нового поколения,...
Тип: Изобретение
Номер охранного документа: 0002696302
Дата охранного документа: 01.08.2019
08.08.2019
№219.017.bd14

Способ получения листов высокомарганцевой стали с улучшенными механическими свойствами

Изобретение относится к области металлургии, в частности к деформационно-термической обработке металлов, а точнее к способу получения листов из аустенитных высокомарганцевых TWIP сталей с энергией дефекта упаковки от 20 до 50 мДж/м, и может быть использовано в автомобилестроении для...
Тип: Изобретение
Номер охранного документа: 0002696789
Дата охранного документа: 06.08.2019
12.08.2019
№219.017.be60

Способ получения катанки из термостойкого алюминиевого сплава

Изобретение относится к области металлургии, а именно к способам получения изделий электротехнического назначения на основе алюминия, применяемых для изготовления электротехнической катанки и проводов высоковольтных линий электропередач. Способ включает приготовление расплава, содержащего,...
Тип: Изобретение
Номер охранного документа: 0002696794
Дата охранного документа: 06.08.2019
12.08.2019
№219.017.be8c

Алюминиево-циркониевый сплав

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, используемым в качестве электротехнической катанки и проводов для линий электропередач. Алюминиево-циркониевый сплав содержит, мас.%: 0,22-0,4 Zr, 0,2-0,4 Si, 0,62-0,8 Fe, алюминий – остальное, при соотношении...
Тип: Изобретение
Номер охранного документа: 0002696797
Дата охранного документа: 06.08.2019
26.11.2019
№219.017.e6a9

Способ термомеханической обработки полуфабрикатов из термоупрочняемых al-cu-mg-ag сплавов

Изобретение относится к области металлургии, а именно к термомеханической обработке полуфабрикатов из термоупрочняемых Al-Cu-Mg-Ag сплавов для улучшения механических свойств и показателей жаропрочности готовых изделий, применяемых в современных газотурбинных двигателях наземного и авиационного...
Тип: Изобретение
Номер охранного документа: 0002707114
Дата охранного документа: 22.11.2019
+ добавить свой РИД