×
19.04.2019
219.017.30c6

Результат интеллектуальной деятельности: СПОСОБ БЕЗДЫМНОГО СЖИГАНИЯ ГАЗА В ФАКЕЛЬНЫХ УСТАНОВКАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу сжигания газов и к устройству оголовков факельных установок. Способ заключается в том, что поток газа, подаваемый для сжигания, разделяют на ряд основных и дополнительных струй, эжектируемый поток воздуха закручивают струями сжигаемого газа и стабилизаторами горения. Стабилизацию горения осуществляют струями газа и стабилизаторами-завихрителями. Устройство для бездымного сжигания газа в факельной трубе содержит горелку в виде заглушенной факельной трубы с выходными основными соплами, дополнительные сопла и уголковые стабилизаторы-завихрители. Изобретение позволяет осуществить бездымное сжигание газа в широком диапазоне расходов газа и повысить надежность стабилизации горения. 2 н.п.ф-лы, 2 ил.

Изобретение относится к способу сжигания газов и устройству оголовков факельных установок и может быть использовано в отраслях промышленности, связанных с постоянным, периодическим и аварийным сжиганием газа, например, в нефтехимической и нефтеперерабатывающей.

Известен способ сжигания газа и устройство, его реализующее (патент США №4038024, МКИ F23С 11/00, 1977), в котором поток сжигаемого газа разбивается на ряд длинных и тонких струй, хорошо смешивающихся с воздухом, что обеспечивает бездымное сжигание газа. Устройство для реализации этого способа представляет собой трубу, заглушенную сверху с продольными прорезями в верхней части. На каждой прорези к трубе приварены щелевые выходные сопла шириной 5,1 мм, расположенные тангенциально к трубе, причем окружность касания сопел меньше внутреннего диаметра трубы. Особенностью устройства является изменение направления выходных головок от вертикали примерно на 45°. Недостатком аналога являются: возможность закупоривания узких щелевых сопел; конструктивная сложность; свертывание плоских струй в круглые при малых давлениях сжигаемого газа, что приводит к дымлению.

Наиболее близким по технической сущности и совокупности признаков является способ бездымного сжигания газа и устройство, его реализующее (патент RU 2241905, 7 F23D 14/20, приоритет 10.07.2002, опубл. 10.12.2004, Бюл.34), в котором поток сжигаемого газа разделяют на ряд основных круглых струй с диаметром, превышающим 5 мм, направленных по касательной к цилиндрической поверхности, соосной с факельной трубой, под углом 25-80° к оси факельной трубы. От каждой из основных струй отделяют ряд дополнительных струй под углом 0-50° к оси факельной трубы, при этом эжектируемый поток воздуха закручивают струями сжигаемого газа и полками уголковых стабилизаторов-завихрителей, расположенных вдоль основных струй газа. Стабилизацию горения осуществляют струями газа, косыми срезами основных сопел и уголковыми стабилизаторами-завихрителями. Устройство для реализации этого способа представляет собой трубу, заглушенную сверху, с рядом отверстий, в которые вварены выходные основные сопла в виде круглых патрубков с косыми срезами. Ряд дополнительных сопел выполнен по образующей патрубков перпендикулярно к их оси. Диаметр основных и дополнительных сопел превышает 5 мм. Основные сопла расположены в плоскостях, касательных к цилиндрической поверхности, соосной с факельной трубой, и направлены под углом 25-80° к оси факельной трубы. Дополнительные сопла направлены в сторону от оси факельной трубы под углом 0-50° к ней. Вдоль основных сопел приварены уголковые стабилизаторы-завихрители.

Недостатком прототипа являются: конструктивная сложность, обусловленная большим количеством основных и дополнительных сопел; возможность дымления при малом напоре сжигаемого воздуха (при малых скоростях истечения газа из сопел, меньших, чем 60 м/с).

Целью изобретения является бездымное сжигание газов в широком диапазоне расходов газа, а также повышение надежности стабилизации горения.

Технический результат достигается за счет способа бездымного сжигания газа во всем диапазоне расходов газа за счет лучшего смешения сжигаемого газа с эжектируемым (подсасываемым) атмосферным воздухом с помощью высоконапорных струй с малым расходом, скорость которых превышает 60 м/с во всем диапазоне расходов сжигаемого газа, и упрощения устройства для осуществления способа за счет уменьшения количества основных и дополнительных сопел.

Технический результат достигается за счет способа бездымного сжигания газа в факельной трубе, заключающегося в том, что поток газа, подаваемый для сжигания, разделяют на ряд основных струй, направляемых под углом 25-80° к оси факела, эжектируемый поток воздуха закручивают струями сжигаемого газа и стабилизаторами горения. Стабилизацию горения осуществляют струями газа и стабилизаторами-завихрителями. Согласно изобретению поток сжигаемого газа разделяют на ряд основных струй в виде секторов конического слоя толщиной, превышающей 5 мм, с помощью стабилизаторов-завихрителей, в область струй сжигаемого газа направляют высокоскоростные струи дополнительного газа с малым расходом, скорость которых превышает 60 м/с во всем диапазоне расходов сжигаемого газа. Высокоскоростные струи направлены по касательным к цилиндрической поверхности, соосной с факельной трубой, под углом 25-80° к оси факельной трубы, при этом эжектируемый поток воздуха и основных струй газа дополнительно закручивается высокоскоростными струями дополнительного газа. Под основными струями располагают дополнительные струи, отделяемые от сжигаемого газа.

Технический результат достигается также за счет устройства для бездымного сжигания газа в факельной трубе, содержащего горелку в виде заглушенной факельной трубы с выходными основными соплами, направленными под углом к оси факельной трубы, дополнительные сопла и уголковые стабилизаторы-завихрители. Согласно изобретению основные сопла выполнены в виде секторов конического кольца, образованного коническим верхним днищем и кромками факельной трубы, разделенного на сектора закручивающими ребрами-стабилизаторами горения, установленными под углом 20-90° к радиальным плоскостям, и частично ограниченного снизу косынками. Полуугол раствора конического днища составляет 25-80°, дополнительные круглые сопла расположены в плоскостях, касательных к цилиндрической поверхности, соосной с факельной трубой, и направлены под углом 25-80° к оси факельной трубы, вдоль дополнительных сопел снизу приварены уголковые стабилизаторы-завихрители, на наружных концах которых крепится кольцевой коллектор высоконапорного газа с соплами, расположенными в плоскостях, касательных к цилиндрической поверхности, соосной с факельной трубой, и направленными под углом 25-80° к оси факельной трубы.

При средних и больших расходах газа основные струи, будучи секторами тонкого конического слоя, хорошо перемешиваются с эжектируемым воздухом и образуют газовоздушный поток, закрученный ребрами-стабилизаторами горения, обеспечивающий бездымное и устойчивое горение за счет зон обратных токов, как за отдельными ребрами-стабилизаторами, так и общей мощной зоны обратных токов, расположенной в центре. То, что основные струи представляют собой секторы конического кольца, существенно сокращает их число по сравнению с круглыми струями у прототипа при одинаковом поперечном размере струй и одинаковом расходе газа. Это существенно упрощает конструкцию устройства.

Высокоскоростные струи дополнительного газа с малым расходом, постоянно подаваемые в область струй сжигаемого газа со скоростью, превышающей 60 м/с, обеспечивают бездымное сжигание газа основных струй и при малых расходах за счет постоянного эжектирования воздуха и его хорошего смешения во всем диапазоне расходов сжигаемого газа. То, что высокоскоростные струи направлены по касательным к цилиндрической поверхности, соосной с факельной трубой, под углом 25-80° к оси факельной трубы, приводит к дополнительной закрутке основных струй газа и эжектируемого потока воздуха, что приводит к созданию зоны обратных токов в центре факела, стабилизации горения и способствует поддержанию горящего факела в вертикальном положении при любых ветровых условиях. Дополнительные струи сжигаемого газа, распространяющиеся внутри уголков, создают устойчивые распределенные очаги пламени по всей наружной поверхности факела, что повышает стабилизацию горения при боковых порывах ветра.

На фиг.1 представлен продольный разрез устройства (разрез А-А на фиг.2) для осуществления способа, на фиг.2 - вид Б на фиг.1.

Устройство состоит из факельной трубы 1, заглушенной сверху коническим днищем 2. Кромки факельной трубы 1 и коническое днище 2 образуют коническое кольцо 3, разделенное на сектора ребрами - стабилизаторами горения 4, установленными под углом 20-90° к радиальным плоскостям, и образующее основные сопла. К ребрам 4 и кромкам трубы 1 приварены косынки 5, частично ограничивающие коническую кольцевую щель снизу. Ниже кромок трубы 1 вварены дополнительные круглые сопла 6, расположенные в плоскостях, касательных к цилиндрической поверхности 7, соосной с факельной трубой 1, и направленные под углом 25-80° к оси 8 факельной трубы. Вдоль дополнительных сопел 6 приварены уголковые стабилизаторы-завихрители 9, на наружных концах которых крепится кольцевой коллектор 10 высоконапорного газа, подводимого по трубе 11. К коллектору 10 крепятся сопла 12 высоконапорного газа, составляющие с осью 8 трубы 1 углы 25-80° и расположенные в плоскостях, касательных к цилиндрической поверхности 13, соосной с факельной трубой 1.

Устройство работает следующим образом. Поток дополнительного высоконапорного газа с малым расходом постоянно истекает из наклонных сопел 12 со скоростью, превышающей 60 м/с, хорошо перемешивается с воздухом и создает общий высокоскоростной закрученный поток газовоздушной смеси в виде полого конуса, сгорающий бездымно. Внутрь горящего конуса подсасывается атмосферный воздух, нагревается и устремляется вверх также под действием подъемной (архимедовой) силы, обеспечивая дополнительную эжекцию воздуха, окружающего горящий конус. За каждой из наклонных струй, истекающих из сопел 12, образуются зоны обратных токов, заполненные продуктами сгорания и стабилизирующие горение. При малых расходах сжигаемого газа, истекающего из основных щелевых сопел 3, этот газ попадает внутрь горящего высокоскоростного факела, перемешивается с ним и с потоком воздуха, эжектируемого внутрь горящего конуса, что обеспечивает бездымное сгорание. При увеличении расхода сжигаемого газа его струи в виде тонких конических секторов, истекающих из основных сопел 3, турбулизируются и начинают сами эжектировать достаточное количество воздуха, что обеспечивает бездымное сгорание при средних и больших расходах. Ребра-стабилизаторы пламени 4, установленные под углом 20-90° к радиальным плоскостям, вызывают закрутку сжигаемого газа, истекающего из основных сопел 3. За ребрами 4 образуются зоны обратных токов, в которые засасываются продукты сгорания и воздух, что обеспечивает стабилизацию горения. Вдоль наклонных уголковых стабилизаторов-завихрителей 9 поступают дополнительные струи сжигаемого газа, и одновременно уголковые стабилизаторы обтекаются поперек потоком воздуха. В результате за ними образуются зоны обратных токов, стабилизирующие горение. Уголковые стабилизаторы защищают зоны горения от срывов пламени порывами ветра, а их расположение способствует закрутке горящего факела. Закрученный поток воздуха и продуктов сгорания обладает повышенной устойчивостью против ветра. Повышенная турбулизация течения при всех расходах сжигаемого газа, вызываемая высокоскоростными струями дополнительного газа из сопел 12, ребрами-стабилизаторами 4, уголковыми стабилизаторами-завихрителями 9, обеспечивает хорошее перемешивание струй газа с воздухом и приводит к высокой полноте и бездымности сгорания газа при всех расходах. Косынки 5, ограничивающие струи газа, истекающего из основных щелевых сопел 3, препятствуют распространению газа вниз по наружной поверхности трубы 1 и образованию пламени на этой поверхности. Стабилизация горения обеспечивается как зонами обратных токов за отдельными струями газа, за ребрами-стабилизаторами 4 и уголковыми стабилизаторами-завихрителями 9, так и общей зоной обратных токов, расположенной в приосевой области факельной трубы 1. Поперечный размер общего закрученного факела и пламени увеличивается при увеличении расхода газа. При этом увеличивается и расход эжектируемого в зону горения атмосферного воздуха, что приводит к сохранению высокой полноты сгорания и бездымного горения во всех расходах.

1.Способбездымногосжиганиягазоввфакельнойтрубе,заключающийсявтом,чтопотокгаза,подаваемыйдлясжигания,разделяютнарядосновныхструй,направляемыхподуглом25-80°косифакельнойтрубы,иряддополнительныхструй,эжектируемыйпотоквоздухазакручиваютструямисжигаемогогазаистабилизаторамигорения,стабилизациюгоренияосуществляютструямигазаистабилизаторами-завихрителями,отличающийсятем,чтопотоксжигаемогогазаразделяютнарядосновныхструйввидесекторовконическихслоевтолщиной,превышающей5мм,изакручиваютспомощьюстабилизаторов-завихрителей,вобластьструйсжигаемогогазанаправляютвысокоскоростныеструидополнительногогазасмалымрасходом,скоростькоторыхпревышает60м/свовсемдиапазонерасходовсжигаемогогаза,высокоскоростныеструинаправляютпокасательнымкцилиндрическойповерхности,сооснойсфакельнойтрубой,подуглом25-80°косифакельнойтрубы,приэтомэжектируемыйпотоквоздухаиосновныхструйгазадополнительнозакручиваютвысокоскоростнымиструямигаза,дополнительныеструисжигаемогогазаотделяютотосновногопотокаирасполагаютподосновнымиструями.12.Устройстводлябездымногосжиганиягазоввфакельнойтрубе,содержащеегорелкуввидезаглушеннойфакельнойтрубысвыходнымиосновнымисоплами,направленнымиподугломкосифакельнойтрубы,дополнительныесоплаиуголковыестабилизаторы-завихрители,отличающеесятем,чтоосновныесоплавыполненыввидеконическогокольца,образованноговерхнимконическимднищемикромкамифакельнойтрубы,разделенногонасектораребрами-стабилизаторамигорения,установленнымиподуглом20-90°крадиальнымплоскостям,ичастичноограниченногоснизукосынками,полууголраствораконическогоднищасоставляет25-80°,дополнительныекруглыесопларасположенывплоскостях,касательныхкцилиндрическойповерхности,сооснойсфакельнойтрубой,инаправленыподуглом25-80°косифакельнойтрубы,вдольдополнительныхсопелснизуустановленыуголковыестабилизаторы-завихрители,нанаружныхконцахкоторыхкрепитсякольцевойколлекторвысоконапорногогазассоплами,расположеннымивплоскостях,касательныхкцилиндрическойповерхности,сооснойсфакельнойтрубой,инаправленнымиподуглом25-80°косифакельнойтрубы.2
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
20.03.2013
№216.012.2f96

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола. Способ включает алкилирование бензола пропиленом в присутствии катализаторного комплекса на основе треххлористого алюминия путем подачи осушенной бензольной шихты, полиалкилбензолов, пропилена, катализаторного комплекса, возвратного...
Тип: Изобретение
Номер охранного документа: 0002477717
Дата охранного документа: 20.03.2013
01.03.2019
№219.016.cd09

Каталитическая система для димеризации этилена и способ димеризации этилена в 1-бутен

Изобретение относится к области получения высших олефинов, а именно 1-бутена полимеризационной степени чистоты, методом каталитической димеризации этилена. Описана каталитическая система для димеризации этилена в 1-бутен на основе алкоголята титана общей формулы Ti(OR), где R=С-С, триалкила...
Тип: Изобретение
Номер охранного документа: 0002304147
Дата охранного документа: 10.08.2007
20.03.2019
№219.016.e7b6

Способ получения бутена-1

Изобретение относится к способу получения бутена-1 путем димеризации этилена при давлении 0,5-4 МПа и температуре 50-95°С в среде углеводородного растворителя в присутствии каталитической системы, состоящей из триалкила алюминия - АlR, в котором R - углеводородный радикал, содержащий 1-6...
Тип: Изобретение
Номер охранного документа: 0002429216
Дата охранного документа: 20.09.2011
10.07.2019
№219.017.aa8b

Способ получения полиэтилена низкого давления

Изобретение относится к технологии получения полиолефинов, а именно к синтезу сополимеров этилена на модифицированных оксиднохромовых катализаторах по методу низкого давления в газофазном реакторе с псевдоожиженном слоем. Описан способ получения полиэтилена низкого давления непрерывной...
Тип: Изобретение
Номер охранного документа: 0002289591
Дата охранного документа: 20.12.2006
Показаны записи 1-7 из 7.
27.08.2014
№216.012.f00d

Способ определения общего технического состояния смазочной системы двигателя внутреннего сгорания

Изобретение может быть использовано для определения общего технического состояния их смазочной системы. Перед определением общего технического состояния смазочной системы двигателя внутреннего сгорания, очищают масляный фильтр. Двигатель прогревают, устанавливают номинальную частоту вращения....
Тип: Изобретение
Номер охранного документа: 0002527272
Дата охранного документа: 27.08.2014
13.01.2017
№217.015.88e1

Воздухоочиститель двигателя внутреннего сгорания транспортного средства

Изобретение относится к машиностроению, в частности к двигателям внутреннего сгорания (ДВС), содержащим воздухоочистители для очистки поступающего в цилиндры воздуха с одновременным выполнением функции глушения газодинамического шума. В воздухоочистителе ДВС транспортного средства, содержащем...
Тип: Изобретение
Номер охранного документа: 0002602469
Дата охранного документа: 20.11.2016
20.02.2019
№219.016.c0d3

Эжектор

Эжектор предназначен для перемещения низконапорного потока с помощью высоконапорного потока среды. Эжектор содержит кольцевое сопло 1 высоконапорного потока и два концентрических кольцевых сопла 2 и 3 низконапорного потока, кольцевую камеру смешения 4 и диффузор 5, образованные наружной...
Тип: Изобретение
Номер охранного документа: 0002366840
Дата охранного документа: 10.09.2009
01.03.2019
№219.016.cd09

Каталитическая система для димеризации этилена и способ димеризации этилена в 1-бутен

Изобретение относится к области получения высших олефинов, а именно 1-бутена полимеризационной степени чистоты, методом каталитической димеризации этилена. Описана каталитическая система для димеризации этилена в 1-бутен на основе алкоголята титана общей формулы Ti(OR), где R=С-С, триалкила...
Тип: Изобретение
Номер охранного документа: 0002304147
Дата охранного документа: 10.08.2007
20.03.2019
№219.016.e7b6

Способ получения бутена-1

Изобретение относится к способу получения бутена-1 путем димеризации этилена при давлении 0,5-4 МПа и температуре 50-95°С в среде углеводородного растворителя в присутствии каталитической системы, состоящей из триалкила алюминия - АlR, в котором R - углеводородный радикал, содержащий 1-6...
Тип: Изобретение
Номер охранного документа: 0002429216
Дата охранного документа: 20.09.2011
29.03.2019
№219.016.f11c

Способ получения нанодисперсного порошка октогена или гексогена и установка для его осуществления

Группа изобретений относится к технологии производства взрывчатых веществ. Предложен способ получения нанодисперсного порошка октогена или гексогена и установка для его осуществления. Октоген или гексоген растворяют в органическом растворителе - циклогексаноне или диметилсульфоксиде, или...
Тип: Изобретение
Номер охранного документа: 0002343138
Дата охранного документа: 10.01.2009
10.07.2019
№219.017.aa8b

Способ получения полиэтилена низкого давления

Изобретение относится к технологии получения полиолефинов, а именно к синтезу сополимеров этилена на модифицированных оксиднохромовых катализаторах по методу низкого давления в газофазном реакторе с псевдоожиженном слоем. Описан способ получения полиэтилена низкого давления непрерывной...
Тип: Изобретение
Номер охранного документа: 0002289591
Дата охранного документа: 20.12.2006
+ добавить свой РИД