×
19.04.2019
219.017.2e79

Результат интеллектуальной деятельности: СОЛНЕЧНАЯ РАКЕТНАЯ КИСЛОРОДНО-ВОДОРОДНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА ИМПУЛЬСНОГО ДЕЙСТВИЯ

Вид РИД

Изобретение

№ охранного документа
0002310768
Дата охранного документа
20.11.2007
Аннотация: Изобретение относится к двигательным системам космических аппаратов, в частности разгонных блоков, выводящих полезные грузы на околоземные и межпланетные орбиты. Оно может применяться в экологически чистых двигательных установках (ДУ) космических аппаратов, пилотируемых и спускаемых на небесные тела станций, требующих их снабжения водой и кислородом. Предлагаемая ДУ содержит солнечную батарею, бак с водой и капиллярным заборным устройством, электролизер, баки с газообразными кислородом и водородом, сообщенную с ними камеру сгорания. При этом электролизер выполнен с твердополимерным электролитом, а его выходы по кислороду сообщены с входами баков газообразного кислорода. Выходы полостей циркуляции воды ячеек электролизера сообщены со входом газожидкостного сепаратора водорода. Выход сепаратора по водороду сообщен с баком газообразного водорода, а выход по воде через циркуляционный водяной насос - с входами указанных полостей циркуляции воды. Бак с газообразным водородом размещен внутри бака с водой так, что стенки обоих баков образуют кольцевой осесимметричный канал, сужающийся к капиллярному заборному устройству бака с водой. Предлагаемая ДУ имеет только один водородный контур с газожидкостным сепаратором, в котором циркулирует чистая вода. Здесь не требуется, как ранее, двух контуров: водородного и кислородного, работающих на экологически опасном и химически агрессивном щелочном или кислотном электролите. Техническим результатом изобретения является обеспечение более простой и надежной, а также экологически чистой ДУ с меньшими массой, габаритами и энергопотреблением. 1 ил.

Солнечная ракетная кислородно-водородная двигательная установка импульсного действия (СРКВДУИД) может применяться для разгонных блоков (РБ), выводящих космические аппараты (КА), не требующие быстрого выведения, со стартовых околоземных орбит на геостационарные, геопереходные и межпланетные орбиты, а также в качестве экологически чистой двигательной установки орбитальных и межпланетных космических аппаратов и орбитальных пилотируемых станций, требующих поддержания высоты орбиты а также снабжения водой и кислородом. Кроме этого, СРКВДУИД в перспективе допускает посадку на ядра комет и астероиды массой до 1015 кг, заправку водой за счет имеющегося на них водяного льда и старт с их поверхности. СРКВДУИД в составе спускаемых аппаратов межпланетных космических аппаратов могут в дальнейшем использоваться для выработки кислородно-водородного топлива за счет имеющегося на Луне, Марсе или спутниках Юпитера водяного льда.

Аналогом СРКВДУИД является кислородно-водородная двигательная установка с заправкой водой и диафрагменным электрическим насосом, показанная в книге И.Тимнат "Ракетные двигатели на химическом топливе", Москва, "Мир", 1990, стр.277, 278, рис.185, основанная на дозаправке водой, в которой используются диафрагменный электрический водяной насос и электролизер; источником энергии служат панели солнечных батарей, а в периоды нахождения в тени - никель-кадмиевые аккумуляторные батареи и аккумуляторы сжатого газа. На рис.186 указанной книги И.Тимната предложена аналогичная двигательная установка, в которой подача воды осуществляется сжатым гелием. Обе представленные на рис.185 и 186 в указанной книге И.Тимната пневмогидравлические схемы кислородно-водородных двигательных установок (КВДУ) представляются неработоспособными по следующим причинам.

Накопление необходимых для работы двигателя газообразных кислорода и водорода осуществляется путем разложения воды в электролизере, питаемого электроэнергией от солнечных батарей или от аккумуляторов на пассивных участках полета в состоянии невесомости. Обычный электролизер работоспособен только при действии перегрузки (на Земле около 1), которая необходима для всплытия выделившихся на электродах пузырьков газов и накопления водорода и кислорода в разобщенных полостях над свободной поверхностью электролита, откуда эти газы подаются в емкости для их хранения.

В условиях невесомости всплытие пузырьков газов и образование газовых подушек над поверхностью электролита невозможно. При попытке включения электролизера в условиях невесомости в результате накопления газов внутри его ячеек и вытеснения из них электролита произойдет полный отказ и даже взрыв электролизера. В книге И.Тимната работоспособность электролизера в условиях невесомости ничем не обоснована и в схемах КВДУ отсутствуют принципиально необходимые для этого агрегаты.

В показанной на рис.185 схеме КВДУ отсутствуют также средства подачи воды из бака в насос в состоянии невесомости. Один диафрагменный насос или наддув бака гелием, в другом варианте на рис.186, этой проблемы не решают.

Другим аналогом СРКВДУИД является двигательная установка, представленная в патенте США N 5279484 от 18 января 1994 г. (МПК7; B64G, 1/40), которая также содержит бак с водой, электролизер, баки с газообразными кислородом и водородом и камеры сгорания. Патент США N 5279484 в части двигательной установки ничем не отличается от рассмотренных выше КВДУ из книги И.Тимната, средства подачи из бака воды в электролизер и работа самого электролизера в условиях невесомости в патенте ничем не обоснованы (нет даже водяного насоса), в связи с чем по указанным выше причинам эта двигательная установка также неработоспособна и практического интереса не представляет (кроме утилизации отходов жизнедеятельности пилотируемого КА с помощью ракетных двигателей, что не является главной задачей самой двигательной установки).

Прототипом СРКВДУИД служит солнечная энергетическая ракетная кислородно-водородная двигательная установка импульсного действия (СЭРДУИД), представленная в патенте РФ N RU 2215891 С2, 10.11.2003. Бюл. N 31. СЭРДУИД содержит солнечную батарею, бак с водой, водяной насос, электролизер, баки с газообразными компонентами топлива, теплообменник с нагревателем водорода, камеру сгорания с пневмогидравлической арматурой, газожидкостные сепараторы водорода и кислорода, циркуляционные насосы электролита, причем электролизер снабжен водородным и кислородным контурами циркуляции электролита, каждый из которых образован магистралями, соединяющими выходы всех ячеек электролизера по водороду и кислороду со входами газожидкостных сепараторов водорода и кислорода соответственно, выходы газожидкостных сепараторов водорода и кислорода по электролиту через соответствующие циркуляционные насосы со входами ячеек электролизера, при этом выходы газожидкостных сепараторов водорода и кислорода по газам подключены к соответствующим бакам с газообразными компонентами топлива, а в баке с водой размещено капиллярное заборное устройство.

Таким образом, для производства, разделения и накопления газообразных компонентов ракетного топлива (водорода и кислорода) СЭРДУИД имеет электролизер с жидким электролитом, который представляет собой водный раствор щелочи или кислоты, и два контура циркуляции этого электролита через ячейки электролизера и газожидкостные сепараторы водорода и кислорода с помощью соответствующих циркуляционных насосов.

Установка-прототип обладает следующими недостатками:

- большая масса, большие габариты и большее энергопотребление на производство топлива щелочного или кислотного электролизера по сравнению с электролизером с ТПЭ;

- большая масса и конструктивная сложность двух контуров циркуляции электролита с двумя сепараторами кислорода и водорода и двумя циркуляционными насосами;

- применение экологически вредных щелочных или кислотных электролитов и асбеста в электролизере.

Задачами изобретения являются:

- создание более простой, надежной, с меньшими массой, габаритами и энергопотреблением солнечной ракетной кислородно-водородной двигательной установки импульсного действия;

- создание экологически чистой (без щелочных или кислотных электролитов и асбеста) солнечной ракетной кислородно-водородной двигательной установки импульсного действия.

Решение этих задач достигается тем, что в солнечной ракетной кислородно-водородной двигательной установке импульсного действия, содержащей солнечную батарею, бак с водой и капиллярным заборным устройством, электролизер, баки с газообразным кислородом, бак с газообразным водородом, камеру сгорания, входы которой сообщены с указанными баками, теплообменник с подогревателем поступающего в камеру сгорания водорода, электрически связанный с солнечной батареей, водяной насос, газожидкостный сепаратор водорода, электролизер выполнен с твердополимерным электролитом, при этом выходы полостей газообразного кислорода ячеек электролизера сообщены через обратный клапан со входами баков с газообразным кислородом, а выходы полостей циркуляции воды ячеек электролизера сообщены со входом газожидкостного сепаратора водорода, выход которого по водороду через обратный клапан сообщен с баком с газообразным водородом, а выход газожидкостного сепаратора водорода по воде с помощью циркуляционного водяного насоса сообщен со входами полостей циркуляции воды ячеек электролизера; кроме этого, бак с газообразным водородом размещен внутри бака с водой таким образом, что стенки обоих баков образуют кольцевой осесимметричный канал, суживающийся к капиллярному заборному устройству бака с водой.

На чертеже изображена предложенная установка, где:

1 - солнечная батарея (СВ);

2 - бак с водой;

3 - электролизер с твердополимерным электролитом (ТПЭ);

4 - газожидкостный сепаратор водорода;

5 - циркуляционный водяной насос;

6 - полости газообразного кислорода ячеек электролизера;

7 - полости циркуляции воды ячеек электролизера;

8 - капиллярное заборное устройство (КЗУ);

9 - водяной насос;

10-12 - обратные клапаны;

13 - редуктор кислорода;

14 - редуктор водорода;

15 - электропневмоклапан (ЭПК) кислорода;

16 - электропневмоклапан (ЭПК) водорода;

17 - теплообменник;

18 - выключатель цепи электролизера;

19 - выключатель цепи теплообменника;

20 - камера сгорания (КС);

21 - баки с газообразным кислородом;

22 - бак с газообразным водородом.

Электрический выход СБ 1 через контакты выключателей цепи электролизера 18 и цепи теплообменника 19 соединен с электролизером с ТПЭ 3 и теплообменником 17. Бак с водой 2 через КЗУ 8, водяной насос 9 и обратный клапан 10 соединен с электролизером с ТПЭ 3. Выходы баков с газообразным кислородом 21 и газообразным водородом 22 через редукторы кислорода 13, водорода 14 и ЭПК кислорода 15 и водорода 16 соединены с КС 20, причем для запуска двигателя используется теплообменник 17, в котором водород после прохождения через рубашку охлаждения КС подогревается до температуры не менее температуры его самовоспламенения с кислородом.

На Земле, в том числе до вывоза на стартовую позицию, бак с водой 2, электролизер с ТПЭ 3 и контур циркуляции воды, состоящий из газожидкостного сепаратора 4, циркуляционного водяного насоса 5 и полостей циркуляции воды ячеек электролизера 7 заправляются чистой водой. Баки с газообразным кислородом 21 и бак с газообразным водородом 22 полностью заправляются газообразными кислородом и водородом. Заправка газов на Земле может производиться от самого электролизера с ТПЭ 3 с одновременной проверкой работы электролизера с ТПЭ 3, газожидкостного сепаратора 4 и циркуляционного водяного насоса 5. Питание электролизера с ТПЭ током производится от наземного источника. Другого наземного оборудования для заправки газообразных компонентов на стартовой позиции в этом случае не требуется.

Установка функционирует следующим образом. Для запуска двигателя в полете открывается ЭПК водорода 16 и замыканием контакта выключателя цепи теплообменника 19 включается электронагреватель теплообменника 17. Водород из бака с газообразным водородом 22 через редуктор водорода 14, ЭПК водорода 16 и рубашку охлаждения КС 20 поступает в теплообменник 17, нагревается там до температуры не ниже температуры самовоспламенения с газообразным кислородом, после чего вводится в КС 20. Вслед за этим открывается ЭПК кислорода 15 и кислород из баков с газообразным кислородом 21 через редуктор кислорода 13 и ЭПК кислорода 15 поступает в КС и воспламеняется там с нагретым водородом. Двигатель может работать до тех пор, пока давление в баках с газообразным кислородом 21 и в баке с газообразным водородом 22 не снизится до заданной величины. По этому признаку или в любое заданное время до его наступления по команде от системы управления размыкается контакт выключателя цепи теплообменника 19 и закрываются ЭПК кислорода 15 и ЭПК водорода 16. С выключением подачи компонентов прекращается выдача двигателем очередного импульса тяги.

Дозаправка в полете газообразных компонентов в баки с газообразным кислородом 21 и бак с газообразным водородом 22 производится в режиме стабилизации космического объекта (КО) с направленными на Солнце панелями солнечных батарей (СБ) 1. Замыканием контакта выключателя цепи электролизера 18 включаются электролизер с ТЛПЭ 3 и циркуляционный водяной насос 5 водородного контура, осуществляющий циркуляцию воды через полости циркуляции воды ячеек электролизера 7 и газожидкостный сепаратор 4, в котором происходит отделение от воды выделившихся при ее электролизе в полостях циркуляции воды ячеек электролизера 7 газовых включений водорода. Газообразный кислород выделяется в сухие полости газообразного кислорода ячеек электролизера 6 с пластин ТПЭ. Когда давление водорода в газожидкостном сепараторе 4 достигнет настройки обратного клапана 12, а давление кислорода в полостях газообразного кислорода ячеек электролизера 6 достигнет настройки обратного клапана 11, газообразные водород и кислород начнут поступать в бак с газообразным водородом 22 и баки с газообразным кислородом 21 соответственно.

В процессе электролиза вода превращается в газообразные компоненты топлива и объем воды, циркулирующей в водородном контуре, постепенно уменьшается, а объем газовой подушки в газожидкостном сепараторе 4 соответственно увеличивается. При достижении минимально допустимого содержания воды в газожидкостном сепараторе 4 включается водяной насос 9 и вода из бака с водой 2 через капиллярное заборное устройство 8, задерживающее газовые включения, и обратный клапан 10 подается в водородный контур циркуляции воды, увеличивая его наполнение и уменьшая объем газовой подушки, находящейся в газожидкостном сепараторе 4. При достижении заданного максимального наполнения водой газожидкостного сепаратора 4 водяной насос 9 выключается и подпитка водой водородного контура прекращается.

После достижения заданного максимального давления газов в баках с газообразным кислородом 21 и в баке с газообразным водородом 22 контакт выключателя цепи электролизера 18 размыкается, электролизер с ТПЭ 3 и циркуляционный водяной насос 5 выключаются и СРКВДУИД переходит в режим ожидания команды от системы управления на выдачу двигателем очередного импульса тяги. Часть вырабатываемых СРКВДУИД газообразных компонентов, а также излишки кислорода могут использоваться системами управления и жизнеобеспечения космических объектов (КО).

Ракета-носитель выводит КО с СРКВДУИД сразу на выбранную стартовую орбиту. После отделения от носителя КО разворачивается и стабилизируется в направлении первого разгонного импульса.

После выключения двигателя раскрываются и ориентируются на Солнце панели ОБ 1. Первый импульс, как и все последующие импульсы, могут выдаваться СРКВДУИД в любые заданные моменты времени после очередной дозаправки от электролизера с ТПЭ 3 баков с газообразным кислородом 21 и бака с газообразным водородом 22 газообразными компонентами топлива. Количество выдаваемых двигателем СРКВДУИД импульсов тяги и дозаправок баков 21 и 22 газообразными компонентами топлива до выработки всей заправленной в бак 2 воды, а также времена между импульсами тяги, за исключением времен дозаправки баков газообразными компонентами топлива, и общее время пребывания СРКВДУИД в полете не ограничиваются.

Предложенная СРКВДУИД обладает следующими преимуществами:

- СРКВДУИД оснащена электролизером с твердополимерным электролитом, который в 5-10 раз меньше по массе и габаритам и потребляет на 20% меньше электроэнергии, чем водощелочной электролизер СЭРДУИД с такой же производительностью;

- СРКВДУИД имеет меньшую массу, проще по конструкции и экологически безопаснее, так как имеет только один водородный контур с газожидкостным сепаратором и циркуляционным насосом, в котором циркулирует чистая вода, вместо двух контуров СЭРДУИД - водородного и кислородного - с аналогичными агрегатами, работающими на экологически опасном и химически агрессивном щелочном или кислотном электролите, который требует еще специальной системы поддержания его состава;

- СРКВДУИД имеет один большой бак газообразного водорода, размещенный внутри бака с водой, что, с одной стороны, делает СРДУИД более легкой и компактной, не требует теплозащиты водородного бака, а с другой стороны, уменьшает габариты и повышает надежность работы КЗУ, обеспечивая прилив к КЗУ жидкости под действием капиллярных сил в кольцевом, суживающемся к КЗУ канале между стенками бака с водой и бака с газообразным водородом;

- применение электролизера с ТПЭ позволяет без помощи компрессоров увеличить давление газообразных компонентов топлива до 200 атм и соответственно увеличить запас газообразного топлива на борту и удельный импульс двигателя СРКВДУИД;

- в связи с отсутствием агрессивного и экологически опасного щелочного или кислотного электролита упрощаются экспериментальная отработка и эксплуатация СРКВДУИД на Земле и в полете.

Солнечнаяракетнаякислородно-водороднаядвигательнаяустановкаимпульсногодействия,содержащаясолнечнуюбатарею,баксводойикапиллярнымзаборнымустройством,электролизер,бакисгазообразнымкислородом,баксгазообразнымводородом,камерусгорания,входыкоторойсообщенысуказаннымибаками,теплообменниксподогревателемпоступающеговкамерусгоранияводорода,электрическисвязанныйссолнечнойбатареей,водянойнасос,газожидкостныйсепараторводорода,отличающаясятем,чтоэлектролизервыполненствердополимернымэлектролитом,приэтомвыходыполостейгазообразногокислородаячеекэлектролизерасообщенычерезобратныйклапансвходамибаковсгазообразнымкислородом,авыходыполостейциркуляцииводыячеекэлектролизерасообщенысовходомгазожидкостногосепаратораводорода,выходкоторогоповодородучерезобратныйклапансообщенсбакомсгазообразнымводородом,авыходгазожидкостногосепаратораповодеспомощьюциркуляционноговодяногонасосасообщенсовходамиполостейциркуляцииводыячеекэлектролизера,приэтомбаксгазообразнымводородомразмещенвнутрибакасводойтакимобразом,чтостенкиобоихбаковобразуюткольцевойосесимметричныйканал,сужающийсяккапиллярномузаборномуустройствубакасводой.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 71.
10.04.2019
№219.017.0a33

Способ запуска криогенного центробежного насоса с разгрузочной полостью, сообщающейся со входом в насос, и криогенный центробежный насос

Изобретение относится к насосостроению, в частности к центробежным насосам системы подачи криогенных компонентов топлива жидкостных ракетных двигательных установок (ЖРДУ). Способ запуска криогенного центробежного насоса с разгрузочной полостью, сообщающейся со входом в насос, заключается в...
Тип: Изобретение
Номер охранного документа: 02171917
Дата охранного документа: 10.08.2001
10.04.2019
№219.017.0a3b

Жидкостный ракетный двигатель

Жидкостный ракетный двигатель содержит камеру сгорания с соплом, имеющие тракт регенеративного охлаждения, насос окислителя и насос горючего с расходными магистралями окислителя и горючего, соединенные с приводной турбиной. Вход газогенератора подключен к расходной магистрали окислителя и через...
Тип: Изобретение
Номер охранного документа: 02173399
Дата охранного документа: 10.09.2001
10.04.2019
№219.017.0a4d

Способ установки уплотнительных колец между корпусом и валом

Изобретение относится к машиностроению и может быть использовано для сборки гидропневмоагрегатов с уплотнительными кольцами радиального сжатия, требующих высокой степени герметичности и надежности уплотнения полостей. Способ установки уплотнительных колец между корпусом и валом включает...
Тип: Изобретение
Номер охранного документа: 02167353
Дата охранного документа: 20.05.2001
10.04.2019
№219.017.0ae7

Способ регулирования температуры в термокамере

Изобретение относится к испытательной технике, в частности к проведению тепловакуумных испытаний космических объектов, и может найти применение в областях техники, где предъявляются повышенные требования к надежности изделий при их эксплуатации. Предлагаемый способ регулирования температуры в...
Тип: Изобретение
Номер охранного документа: 02195695
Дата охранного документа: 27.12.2002
10.04.2019
№219.017.0ae9

Разъемное соединение трубопроводов

Разъемное соединение трубопроводов относится к агрегатам и узлам пневмогидросистем. Разъемное соединение трубопроводов содержит уплотнение. Последнее выполнено в виде двух уплотнений. Одним из них является кольцевая металлическая прокладка. Вторым уплотнением является многорядное армированное...
Тип: Изобретение
Номер охранного документа: 02197672
Дата охранного документа: 27.01.2003
17.04.2019
№219.017.165e

Устройство для определения пульсаций давления, действующих на изделие, при воздействии струей реактивного двигателя (варианты)

Изобретение относится к экспериментальной газодинамике, а именно к устройствам определения пульсаций давления, действующих на элементы конструкции, подвергающиеся воздействию высокотемпературной струи с быстроменяющимися в процессе этого воздействия газодинамическими и температурными...
Тип: Изобретение
Номер охранного документа: 02169353
Дата охранного документа: 20.06.2001
19.04.2019
№219.017.2e9a

Способ определения угловых координат измерительной оси акселерометра

Изобретение относится к области измерения и может быть использовано для настройки и калибровки акселерометров и приборов, содержащих акселерометры. Способ включает измерение сигнала в исходном положении и после двух разворотов вокруг двух горизонтальных осей, положение которых известно...
Тип: Изобретение
Номер охранного документа: 0002316009
Дата охранного документа: 27.01.2008
19.04.2019
№219.017.2eb0

Цифроаналоговый преобразователь гидравлического привода

Преобразователь предназначен для приводов исполнительных органов ракет и других летательных аппаратов. Преобразователь содержит корпус, шток обратной связи, гидроусилители, гильзу с осевым отверстием, цепочку плавающих поршней, попарно связанных между собой, снабженных отсечными поясками и...
Тип: Изобретение
Номер охранного документа: 0002313698
Дата охранного документа: 27.12.2007
19.04.2019
№219.017.3016

Тренажер с "бегущей" дорожкой

Изобретение предназначено для выполнения в космическом аппарате и позволяет исключить силовые воздействия, возникающие при тренировке космонавтов, на конструкцию космического аппарата и уменьшить массу тренажера. "Бегущая" дорожка с приводом смонтирована на раме, подвешенной на гибких фалах в...
Тип: Изобретение
Номер охранного документа: 0002309783
Дата охранного документа: 10.11.2007
19.04.2019
№219.017.301f

Устройство для местной термообработки

Изобретение относится к области термообработки. Техническим результатом является возможность обработки нескольких сварных швов или соединений, а также универсальность устройства при термической обработке сварных соединений различных изделий. Устройство содержит оболочку с расположенными в зонах...
Тип: Изобретение
Номер охранного документа: 0002309993
Дата охранного документа: 10.11.2007
Показаны записи 11-16 из 16.
25.08.2017
№217.015.b775

Камера сгорания жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. В камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002614902
Дата охранного документа: 30.03.2017
20.01.2018
№218.016.1dd9

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с дополнительными придонными перегородками, заборным устройством, штангой датчика уровня криогенного топлива, маршевый двигатель. Криогенный бак окислителя снабжен каплеотражателем,...
Тип: Изобретение
Номер охранного документа: 0002640941
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eac

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с основными продольными перегородками, дополнительными придонными перегородками и заборным устройством, маршевый двигатель и дополнительную автономную двигательную установку системы...
Тип: Изобретение
Номер охранного документа: 0002641022
Дата охранного документа: 15.01.2018
01.07.2018
№218.016.6974

Способ распознавания структуры ядер бластов крови и костного мозга с применением световой микроскопии в сочетании с компьютерной обработкой данных для определения в- и т-линейных острых лимфобластных лейкозов

Изобретение относится к области медицины, а именно к медицинской диагностике, и может быть использовано для распознавания структуры ядер бластов крови и костного мозга с применением световой микроскопии в сочетании с компьютерной обработкой данных для диагностики В- и Т-линейных острых...
Тип: Изобретение
Номер охранного документа: 0002659217
Дата охранного документа: 28.06.2018
02.10.2019
№219.017.cd77

Способ диагностики рака молочной железы с экспрессией рецептора her2/neu на мембране опухолевых клеток

Изобретение относится к области медицины. Предложен способ диагностики рака молочной железы с экспрессией рецептора Her2/neu на мембране опухолевых клеток. Способ включает проверку антител на предмет выявления антигена в заведомо антиген-позитивных случаях рака молочной железы методом проточной...
Тип: Изобретение
Номер охранного документа: 0002701356
Дата охранного документа: 25.09.2019
20.04.2023
№223.018.4b21

Способ предпусковой инерционной сепарации в невесомости газовых включений в жидком компоненте топлива орбитального блока (варианты)

Группа изобретений относится к ракетно-космической технике и может быть использована при проектировании и эксплуатации орбитальных блоков с жидкостной ракетной двигательной установкой (ЖРДУ), особенно с многократным запуском маршевого двигателя (МД) в процессе длительного полета орбитального...
Тип: Изобретение
Номер охранного документа: 0002775946
Дата охранного документа: 12.07.2022
+ добавить свой РИД