×
19.04.2019
219.017.2e9a

СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВЫХ КООРДИНАТ ИЗМЕРИТЕЛЬНОЙ ОСИ АКСЕЛЕРОМЕТРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002316009
Дата охранного документа
27.01.2008
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области измерения и может быть использовано для настройки и калибровки акселерометров и приборов, содержащих акселерометры. Способ включает измерение сигнала в исходном положении и после двух разворотов вокруг двух горизонтальных осей, положение которых известно относительно ортогонального базиса, на определенные углы с последующим измерением сигналов с акселерометра. Углы разворота и угловые координаты определяются из соответствующих соотношений, что упрощает способ и, следовательно, позволяет использовать простое технологическое оборудование (с меньшим числом степеней свободы) для калибровки приборов, содержащих акселерометры. 1 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области измерения и может быть использовано для настройки и калибровки акселерометров и приборов, содержащих акселерометры.

Известен способ определения параметров прецизионных акселерометров, в частности погрешности базовых установочных элементов и угловой деформации основания в плоскости, перпендикулярной оси его вращения, описанный в [1], включающий развороты акселерометра, закрепленного на вертикальном основании, вокруг горизонтальной оси и вокруг измерительной оси на некоторые, заранее заданные углы с одновременным наблюдением выходного сигнала.

Однако для реализации данного способа необходимо осуществлять вращение вокруг измерительной оси акселерометра, что не всегда возможно легко реализовать, т.к. требуется сложное оборудование.

Известен способ определения угловых координат измерительной оси акселерометра - прототип, описание которого приведено в [2]. Сущность данного способа заключается в том, что проводят два разворота акселерометра вокруг первой и второй горизонтальной оси на углы, при которых сигнал акселерометра равен нулю, и после этого, зная углы между осями вращения и осями ортогонального базиса и углы разворотов, вычисляют координаты измерительной оси акселерометра.

Однако способ требует проведения вращения до получения нулевого сигнала с акселерометра. При развороте акселерометра требуется проводить несколько последовательных поворотов (приближений) и замеров сигнала с акселерометра для того, чтобы определить момент нулевого сигнала, что требует больших затрат времени.

Задача изобретения - упрощение способа и увеличение экономичности.

Эта задача достигается тем, что в способе определения угловых координат α, β, γ измерительной оси акселерометра относительно ортогонального базиса X, Y, Z, включающем первый и второй развороты вокруг горизонтальной оси, расположенной в плоскости горизонта XOY, при этом первый разворот акселерометра из начального положения вокруг первой оси OA1, расположенной под углом ϕ1 к оси Х базиса, проводят на угол λP1, после чего из начального положения производят второй разворот акселерометра вокруг второй оси ОА2, расположенной в плоскости XOY под углом ϕ2 к оси X, на угол λP2, дополнительно измеряют сигналы акселерометра U1 в исходном положении, U2 после первого и U3 после второго разворотов на углы λP1 и λP2, а угловые координаты α, β и γ определяют из соотношений:

U2/U1=Sin(λ1P1)/Sinλ1

U3/U1=Sin(λ2P2)/Sinλ2

Cos2α+ Cos2β+Cos2γ=1

Sin2λ1=Cos2γ:[1-(Cosϕ1×Cosα+Cosβ×Sinϕ1)2]

Sin2λ2=Cos2γ:[1-(Cosϕ2×Cosα+Cosβ×Sinϕ2)2]

при этом величину углов λP1 и λP2 выбирают из соотношений:

Sin2λP1=Cos2γP:[1-(Cosϕ1×CosαP+CosβP×Sinϕ1)2]

Sin2λP2=Cos2γP:[1-(Cosϕ2×CosαP+CosβP×Sinϕ2)2]

где αP∈[α0-Δα, α0+Δα], βP∈[β0-Δβ, β0+Δβ], γР∈[γ0-Δγ, γ0+Δγ], а α0, β0, γ0 - заданные угловые координаты измерительной оси, Δα, Δβ, Δγ - максимально возможная погрешность фактического расположения измерительной оси относительно заданного положения, λ1, λ2 - углы поворота акселерометра из начального положения, при которых сигнал с акселерометра равен нулю.

На чертеже представлена базовая ортогональная система координат OXYZ и орт е (измерительная ось акселерометра), заданный углами α, β и γ, которые он образует с положительными направлениями осей OXYZ. Плоскость, заданная векторами OZ и е, образует прямой угол с плоскостью OXY. Вектор OA1 является осью первого разворота, принадлежит плоскости OXY и образует угол ϕ1 с вектором ОХ. Вектор ОА2 является осью второго разворота, принадлежит плоскости OXY и образует угол ϕ2 с вектором OX. λ1 - это угол поворота акселерометра из начального положения вокруг оси OA1 до положения, при которых сигнал с акселерометра равен нулю. λ2 - это угол поворота акселерометра из начального положения вокруг оси ОА2 до положения, при которых сигнал с акселерометра равен нулю. Угол δ - это угол между осью вращения ОА1 и измерительной осью акселерометра. Отрезок BD перпендикулярен оси вращения ОА1 и является катетом прямоугольного треугольника OBD. Дуга A1C и дуга а являются катетами сферического прямоугольного треугольника А1ВС с прямым углом С, а дуга с является его гипотенузой. Определим сигнал с акселерометра в исходном состоянии. Для этого рассмотрим прямоугольный треугольник OBD с прямым углом D. В нем катет BD можно выразить через гипотенузу е как

Таким образом, можно представить измеренный сигнал U от полного сигнала акселерометра F в случае, когда плоскость BOA1 перпендикулярна плоскости OXY, плоскость OXY горизонтальна, а вектор е совпадает с измерительной осью акселерометра как U=F×Sinδ. В случае, когда угол между плоскостью ВОА1 и плоскостью OXY равен μ, измеренный сигнал U можно представить как

В прямоугольном сферическом треугольнике A1BC гипотенуза с определена углом δ, а катет а - углом (90°-γ). Исходя из формулы синусов для сферических треугольников (Sina/SinA1=Sinc/SinC) получим:

Учитывая, что SinC=1, Sin(90°-γ)=Cosγ, a SinA1=Sinλ1, выражение (3) примет вид:

Подставив Sinδ из соотношения (4) в выражение (2), получим:

Учитывая, что в исходном состоянии μ=λ1, получим выражение для первого замера сигнала с акселерометра:

Сигнал с акселерометра после первого разворота вокруг оси OA1 на известный угол λP1 (второй замер) будет:

Разделив соотношение (7) на (6), получим:

Аналогичным образом получим соотношение для сигналов U3 (третий замер) и U1 (первый замер) после второго разворота вокруг оси ОА2 на известный угол λP2:

Определение угловых координат α, β и γ измерительной оси е акселерометра осуществляется следующим образом. Пусть поворотная установка имеет платформу, которую можно горизонтировать и устанавливать на нее акселерометр (прибор, в котором установлены акселерометры). Поворотная установка имеет две измерительные оси вращения OA1 и OA2 с точной фиксацией углов поворота, расположенные под углами ϕ1 и ϕ2 относительно оси X. Выставим плоскость OXY поворотной установки в горизонт. Проведем первый замер сигнала U1 с акселерометра в исходном состоянии. Вычислим углы λP1 и λP2 из соотношений:

Sin2λP1=Cos2γP:[1-(Cosϕ1×CosαP+CosβP×Sinϕ1)2]

Sin2λP2=Cos2γP:[1-(Cosϕ2×CosαP+CosβP×Sinϕ2)2]

где αP∈[α0α, α0α], βP∈[β0β, β0β], γP∈[γ0γ, γ0γ], α0, β0, γ0 - заданные угловые координаты измерительной оси, Δα, Δβ, Δγ - максимально возможная погрешность фактического расположения измерительной оси относительно заданного положения. Повернем платформу относительно оси ОА1 на угол λP1. Проведем второй замер сигнала U2 с акселерометра. Установим акселерометр (прибор) в исходное положение (выставим плоскость OXY поворотной установки в горизонт). Повернем платформу относительно оси ОА2 на угол λP2. Проведем третий замер сигнала U3 с акселерометра. Вычислим углы λ1 и λ2, решая уравнения (8) и (9). Подставим значения ϕ1, λ1 и ϕ2, λ2 в два последние равенства системы уравнений

Cos2α+Cos2β+Cos2γ=1

Sin2λ1=Cos2γ:[1-(Cosϕ1×Cosα+Cosβ×Sinϕ1)2]

Sin2λ2=Cos2γ:[1-(Cosϕ2×Cosα+Cosβ×Sinϕ2)2]

и, решая ее, определим угловые координаты α, β и γ измерительной оси акселерометра е в исходном базисе X, Y, Z.

Оценим влияние выбора угла λPP1 и λP2) на точность измерения сигнала с акселерометра и вычисления угла λ (λ1 и λ2). Выберем λP1 и λP2 из соотношений:

Sin2λP1=Cos2γP:[1-(Cosϕ1×CosαP+CosβP×Sinϕ1)2]

Sin2λP2=Cos2γP:[1-(Cosϕ2×CosαP+CosβP×Sinϕ2)2]

где αp∈[α0α, α0α], βP∈[β0β, β0β], γP∈[γ0γ, γ0γ], α0, β0, γ0 - заданные угловые координаты измерительной оси, Δα, Δβ, Δγ - максимально возможная погрешность фактического расположения измерительной оси относительно заданного положения. Покажем, что такой выбор дает лучшую точность измерения. Результат измерения сигнала с датчика UП с учетом относительной погрешности можно будет представить как:

UП=K×U, где K - коэффициент, определяющий погрешность. С учетом выражения (7) получим:

Это измерение с погрешностью приведет к неточному вычислению угла λ, который будет иметь погрешность Р, или

Приравнивая правые части выражений (10) и (11) и преобразовывая, получим:

K×Sin(λ-λP)/Sinλ=Sin(λ+Р-λP)/Sin(λ+Р)

Данное выражение является функцией зависимости Р от λP (Р=f(λP)), представленной в неявном виде. Проводя исследование данной функции (например, численным методом), видим, что

LimP=0

Т.е. чем ближе λP к λ, тем меньше величина (λ-λP), соответственно, меньше величина Sin(λ-λP). Следовательно, меньше сигнал с акселерометра и меньше сигнал с учетом относительной погрешности. Это приводит к уменьшению погрешности Р при вычислении угла λ. Выбор λP1 и λP2 из соотношений, приведенных в предлагаемой формуле изобретения, обеспечивает близость значений λP1 и λP2 к значениям λ1 и λ2 соответственно.

Эффект от использования предлагаемого способа заключается в том, что он проще известного, т.к. для определения угловых координат акселерометра требуется всего три измерения сигнала с акселерометра и два поворота последнего на определенные углы. В то время как в прототипе требуется проводить несколько последовательных поворотов с последующими замерами сигнала с акселерометра до тех пор, пока сигнал не уменьшится до определенной величины. При этом для уменьшения числа итераций по последовательному приближению требуется наличие хорошей квалификации у оператора.

Вместе с тем предложенный способ позволяет увеличить экономичность определения координат измерительной оси за счет того, что сокращается время на проведение работ. Так, например, в случае, если необходимо получить точность прибора на уровне 10-5 по абсолютной величине, диапазон измеряемых ускорений составляет 10 м/с2, а вес одного разряда приращения 4 мм/с. Т.е. величина минимального измеряемого сигнала составит 10 м/с2×10-5=0,1 мм/с2. И период следования информационных импульсов (кодовых посылок) от минимального полезного сигнала составит 4 мм/с:0,1 мм/с2=40 с. Следовательно, период следования кода, формируемого за счет погрешности, должен быть больше. Учитывая, что трудно (с точки зрения стоимости) бороться с погрешностью, вызванной электронной частью прибора, желательно минимизировать погрешность от неправильной тарировки (измерения координат) датчиков. Это вызывает необходимость увеличивать период следования кода от неправильной установки примерно на порядок, т.е. до 400 с. С учетом особенностей работы измерительных приборов (организации цикла измерения, например, с целью защиты от "плавания" периода, вызванного синхронизацией преобразования и передачи информационного кода, вводится измерение нескольких периодов и вычисления среднего), реальное время измерения может быть значительно больше. Учитывая, что операция разворота занимает много времени и необходимо провести измерение параметров нескольких акселерометров, установленных в приборе, при реализации способа-прототипа, потребуется очень много времени, что делает его дорогим в части трудозатрат. Поэтому в случае применения акселерометров, не имеющих нулевой составляющей сигнала (сигнал акселерометра равен нулю при отсутствии ускорения), предлагаемый способ является более экономичным.

Точность определения угловых координат у предложенного способа будет не хуже, чем у прототипа для датчиков с линейным коэффициентом преобразования. У заявляемого способа она определяется погрешностью измерения, а у прототипа - погрешностью измерения плюс допуск на устанавливаемый нулевой сигнал (сигнал, при котором прекращаются действия по изменению наклона для достижения еще более низкого сигнала с акселерометра). При этом абсолютные погрешности измерений у предлагаемого способа могут быть больше. Рассмотрим их влияние на вычисление углов λ. На практике приходится решать задачу по измерению фактических угловых координат α, β и γ измерительной оси акселерометра, получившихся при изготовлении прибора и отличающихся от заданных α0, β0, γ0 на некоторые небольшие значения ±Δi (i=α, β, γ). Вычисленное значение углов λP будет отличаться от углов λ (при повороте на который сигнал с акселерометра равен нулю) на величину того же порядка, что и допуска ±Δi (будет изменяться в зависимости от соотношения углов α, β и γ). Пусть, например, эта разница составляет 20′, искомый угол λ1=45°, вычисленный угол λP1=44° 40′, относительная погрешность измерения сигнала с акселерометра 0,001. Вычислим угол λ1, подставляя выбранные значения в уравнение (8) и решая его, при этом примем, что U2=(1+0,001)×Sin45°, a U1=(1-0,001)×Sin20' (т.е. наихудший случай, когда погрешности при измерении имеют разный знак). В результате получим λ1=44,999330°, т.е. погрешность составляет всего 2,42". В случае уменьшения относительной погрешности при измерении сигнала с акселерометра погрешность при вычислении будет еще меньше. Уменьшение допуска на устанавливаемый нулевой сигнал ниже нескольких секунд у способа-прототипа приводит к увеличению операций разворот-измерение.

Предлагаемая совокупность признаков в рассмотренных авторами решениях не встречалась для решения поставленной задачи и не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии технического решения критериям "новизна" и "изобретательский уровень".

Для реализации данного способа необходима платформа с не менее чем двумя рамками карданного подвеса (двумя степенями свободы), например, такая, как представлена в [3] страница 158.

Литература

1. Патент Российской Федерации №02117950 от 20.08.98. Способ определения параметров прецизионных акселерометров. G01P 21/00.

2. Патент Российской Федерации №02164693 от 29.07.99. Способ определения угловых координат измерительной оси акселерометра. G01P 21/00.

3. Савант С.Дж., Ховард Р., Соллоуай С., Савант С.А. Принципы инерциальной навигации. Издательство "Мир", 1965 г.

СпособопределенияугловыхкоординатизмерительнойосиакселерометраотносительноортогональногобазисаX,Y,Z,включающийпервыйивторойразворотывокруггоризонтальнойоси,расположеннойвплоскостигоризонтаXOY,приэтомпервыйразворотакселерометраизначальногоположениявокругпервойосиOA,расположеннойподугломϕкосиХбазиса,проводятнауголλ,послечегоизначальногоположенияпроизводятвторойразворотакселерометравокругвторойосиОА,расположеннойвплоскостиXOYподугломϕкосиX,науголλ,отличающийсятем,чтоизмеряютсигналыакселерометраUвисходномположении,UпослепервогоиUпослевторогоразворотовнауглыλиλ,аугловыекоординатыα,βиγопределяютизсоотношений:U/U=Sin(λ-λ)/Sinλ,U/U=Sin(λ-λ)/Sinλ,Cosα+Cosβ+Cosγ=1,Sinλ=Cosγ:[1-(Cosϕ·Cosα+Cosβ·Sinϕ)],Sinλ=Cosγ:[1-(Cosϕ·Cosα+Cosβ·Sinϕ)],приэтомвеличинуугловλиλвыбираютизсоотношений:Sinλ=Cosγ:[1-(Cosϕ·Cosα+Cosβ·Sinϕ)],Sinλ=Cosγ:[1-(Cosϕ·Cosα+Cosβ·Sinϕ)],гдеα∈[α-Δα,α+Δα],β∈[β-Δβ,β+Δβ],γ∈[γ-Δγ,γ+Δγ];α,β,γ-заданныеугловыекоординатыизмерительнойоси;Δ,Δ,Δ-максимальновозможнаяпогрешностьфактическогорасположенияизмерительнойосиотносительнозаданногоположения;λ,λ-углыповоротаакселерометраизначальногоположения,прикоторыхсигналсакселерометраравеннулю.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 71.
20.02.2019
№219.016.bd74

Измерительный преобразователь линейных перемещений

Изобретение относится к электроконтактной технике, а именно к устройствам коммутации электрических цепей изделий, например космических аппаратов. Измерительный преобразователь линейных перемещений содержит корпус, скользящие электрические контакты с изоляционным держателем, втулку,...
Тип: Изобретение
Номер охранного документа: 02201003
Дата охранного документа: 20.03.2003
23.02.2019
№219.016.c7bf

Устройство для разделения жидкости и газа в условиях невесомости

Изобретение относится к космической технике и предназначено для очистки жидкости от газовых включений в условиях невесомости и микрогравитации. Предлагаемое устройство содержит корпус, выполненный в виде двух усеченных конусов, соединенных между собой большими основаниями с помощью кольцевой...
Тип: Изобретение
Номер охранного документа: 0002165871
Дата охранного документа: 27.04.2001
01.03.2019
№219.016.ca8a

Генератор переменного напряжения

Генератор переменного напряжения относится к электронной технике, может быть использован в электронных схемах, где требуется их включение и отключение в заданные моменты времени при отказах или коротком замыкании без коммутации силового питания. Технический результат заключается в расширении...
Тип: Изобретение
Номер охранного документа: 02239928
Дата охранного документа: 10.11.2004
01.03.2019
№219.016.cab7

Отделяемый от гиперзвукового летательного аппарата элемент, обладающий аэродинамическим качеством

Изобретение относится к области аэродинамики, а именно, к разработке отделяемого от гиперзвукового летательного аппарата (ЛА) элемента, обладающего аэродинамическим качеством, и способа спуска его в атмосфере. Может быть использовано при создании гиперзвуковых ЛА различного назначения:...
Тип: Изобретение
Номер охранного документа: 02223896
Дата охранного документа: 20.02.2004
08.03.2019
№219.016.d5cc

Способ контроля герметичности изделий

Изобретение относится к испытательной технике. Технический результат изобретения - повышение чувствительности испытаний и расширение номенклатуры испытываемых изделий. Камеру с размещенным в ней изделием вакуумируют, подают в нее тарированный поток контрольного газа, заправляют изделие...
Тип: Изобретение
Номер охранного документа: 02180737
Дата охранного документа: 20.03.2002
11.03.2019
№219.016.d6d7

Автоматизированная испытательная система для отработки, электрических проверок и подготовки к пуску космических аппаратов

Изобретение относится к наземному оборудованию космических аппаратов (КА), Предлагаемая система содержит блок ее приведения в готовность к испытаниям КА, а также блоки управления, ввода и анализа корректности директив автоматической программы испытаний, интерпретации директив, передачи...
Тип: Изобретение
Номер охранного документа: 0002245825
Дата охранного документа: 10.02.2005
11.03.2019
№219.016.dac2

Способ сборки трехслойной панели с опорными узлами

Изобретение относится к аэрокосмической технике, а именно к созданию панелей для размещения спутникового оборудования. Способ сборки трехслойной панели с опорными узлами включает фиксацию сотового заполнителя опорными узлами. На внутренних сторонах верхней и нижней обшивок и боковых...
Тип: Изобретение
Номер охранного документа: 0002360799
Дата охранного документа: 10.07.2009
11.03.2019
№219.016.ddf9

Способ обезгаживания изделий и устройство для его реализации

Изобретение относится к испытательной технике, в частности к испытаниям изделий на обезгаживание, и может найти применение в тех областях техники, где предъявляются повышенные требования к чистоте изделий. Способ состоит в том, что помещают изделие в вакуумную камеру, экранируют стенки камеры...
Тип: Изобретение
Номер охранного документа: 02177376
Дата охранного документа: 27.12.2001
11.03.2019
№219.016.de33

Способ сушки внутренних поверхностей гидросистемы

Изобретение относится к способам сушки внутренних поверхностей гидросистем, включающих в себя разветвленные трубопроводы с тупиковыми зонами, емкости, агрегаты и узлы с развитой поверхностью перед проверкой их на герметичность. Сущность изобретения заключается в том, что внутренние поверхности...
Тип: Изобретение
Номер охранного документа: 02182691
Дата охранного документа: 20.05.2002
15.03.2019
№219.016.e163

Способ изготовления высокотемпературного электроизоляционного стеклотекстолита

Изобретение относится к электроизоляционным конструкционным стеклотекстолитам и может быть использовано в качестве электроизоляторов. Способ изготовления высокотемпературного электроизоляционного стеклотекстолита включает пропитку стеклоткани 15%-ным раствором кремнийорганической смолы,...
Тип: Изобретение
Номер охранного документа: 0002162458
Дата охранного документа: 27.01.2001
Показаны записи 1-10 из 21.
27.04.2014
№216.012.bce5

Способ измерения электрического сопротивления изоляции между группой объединенных контактов и отдельным контактом и устройство его реализации

Изобретение относится к области электроизмерительной техники, в частности к автоматизированным системам контроля электрического сопротивления и прочности изоляции, и может быть использовано при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий. Способ...
Тип: Изобретение
Номер охранного документа: 0002514096
Дата охранного документа: 27.04.2014
20.07.2014
№216.012.df93

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов...
Тип: Изобретение
Номер охранного документа: 0002523021
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df96

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов...
Тип: Изобретение
Номер охранного документа: 0002523024
Дата охранного документа: 20.07.2014
27.02.2015
№216.013.2cdc

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току, преимущественно в системах управления космических аппаратов. Технический результат заключается в уменьшении массы и габаритов. Коммутатор напряжения с защитой от...
Тип: Изобретение
Номер охранного документа: 0002542952
Дата охранного документа: 27.02.2015
10.08.2015
№216.013.6df5

Способ цифровой фильтрации дискретного сигнала и цифровой фильтр для его реализации

Изобретение относится к области вычислительной техники, к технике цифровой фильтрации и может быть использовано при разработке цифровых фильтров в дискретных системах. Достигаемый технический результат - повышение быстродействия и помехоустойчивости. Способ цифровой фильтрации основан на...
Тип: Изобретение
Номер охранного документа: 0002559707
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.8485

Счетчик

Изобретение относится к области электронной техники и может быть использовано при создании различных устройств контроля и управления, например для формирования шины адреса в многоканальных устройствах. Технический результат заключается в повышении быстродействия. В счетчике выход (n+2)-го...
Тип: Изобретение
Номер охранного документа: 0002565528
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8488

Селектор импульсов по длительности

Изобретение относится к области электронной техники. Технический результат - возможность одновременного контроля напряжения от нескольких источников и времени, в течение которого измеряемое напряжение превышает заданный уровень, что в свою очередь, при использовании селектора импульсов по...
Тип: Изобретение
Номер охранного документа: 0002565531
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8489

Селектор импульсов по длительности

Изобретение относится к области электронной техники и может быть использовано в многоканальных источниках питания с защитой от перегрузки по току для защиты нагрузок, ключей коммутатора и источника напряжения. Техническим результатом является обеспечение защиты от перегрузок по току и по...
Тип: Изобретение
Номер охранного документа: 0002565532
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
10.04.2016
№216.015.3021

Устройство для мажоритарного выбора сигналов (3 варианта)

Изобретение относится к области построения высоконадежных резервированных устройств и систем. Технический результат заключается в повышении надежности за счет формирования сигналов неисправности каждого канала (блока с число-импульсным выходом) и интегрировании сигнала неисправности каждого...
Тип: Изобретение
Номер охранного документа: 0002580791
Дата охранного документа: 10.04.2016
+ добавить свой РИД