×
19.04.2019
219.017.2dbd

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ СОЛЕВЫХ ОТХОДОВ, СОДЕРЖАЩИХ ХЛОРИДЫ ЩЕЛОЧНЫХ И/ИЛИ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к цветной металлургии, а именно к переработке солевых отходов, содержащих хлориды щелочных и/или щелочноземельных металлов, например отработанных электролитов, полученных при электролитическом получении магния, и хлорида магния - побочного продукта, полученного при восстановлении тетрахлорида титана магнием. Техническим результатом является повышение извлечения целевого продукта, снижение капитальных и эксплуатационных затрат и уменьшение слеживаемости готового продукта. Способ включает подачу солевого отхода в виде расплава и сжатого воздуха в камеру распыления, продувание расплава сжатым воздухом с получением дисперсных частиц и охлаждение полученных частиц воздухом. Сжатый воздух перед подачей в камеру распыления сушат и подают в камеру распыления одновременно и перекрестно с расплавом солевого отхода в объемном соотношении солевой отход: осушенный воздух, равном 1:(300-700). Охлаждение дисперсных частиц ведут в отдельной камере. При этом смесь дисперсных частиц и воздуха направляют из камеры распыления в камеру охлаждения со скоростью, равной 300-500 м/с, и перекрестно движению воздуха, подаваемого в камеру охлаждения снизу через отверстия. 5 з.п. ф-лы.

Изобретение относится к цветной металлургии, а именно к электролитическому получению магния и получению губчатого титана магниетермическим восстановлением тетрахлорида титана, в частности к переработке солевых отходов, содержащих хлориды щелочных и/или щелочноземельных металлов - отработанного электролита, полученного при электролитическом получении магния, и хлорида магния - побочного продукта, полученного при восстановлении тетрахлорида титана магнием.

Известен способ переработки солевых отходов, содержащих хлориды щелочных и щелочноземельных металлов для получения гранулированных удобрений из отработанного расплавленного электролита магниевого производства (Авт. свид. СССР №211102, опубл.08.02.1968, бюл.7). Способ включает извлечение отработанного электролита из электролизера для получения магния в герметичный обогреваемый ковш, снабженный патрубками для выпуска электролита и для присоединения к системе, подающей сжатый воздух. Ковш подают к камере для распыления, после чего патрубок для выпуска электролита соединяют с трубопроводом с форсункой, установленной в камере распыления, а второй патрубок - с источником сжатого воздуха. Под действием сжатого воздуха расплавленный электролит, нагретый до температуры более 700°С, постепенно выдавливают из ковша и через форсунку вдувают внутрь распылительной камеры. Одновременно в камеру навстречу факелу распыляемого электролита вдувают водовоздушную тонко пульверизированную смесь. Содержание воды в водовоздушной смеси может составлять от 50 до 200% к весу распыляющего воздуха. Количество вдуваемой в камеру воды определяют с учетом исходной температуры, теплоемкости и других параметров распыляемого электролита. Подачу воды регулируют таким образом, чтобы температура гранул была значительно выше температуры кипения воды и составляла не ниже 120-150°С. В этих условиях обеспечивается полное испарение воды и получение сухих гранул застывшего электролита. Доохлаждение гранулированного электролита происходит в процессе удаления гранул из камеры на транспортирующем устройстве, которое с этой целью может быть выполнено водоохлаждаемым. Застывшие гранулы электролита падают на дно камеры и удаляются. Применение водовоздушной смеси позволяет более чем в 20 раз сократить расход сжатого воздуха и уменьшить габариты распылительной камеры.

Недостатком данного способа является то, что для получения используют солевой отход магниевого производства - отработанный электролит с содержанием хлорида магния 4-10%. Для переработки его в качестве гранулированного удобрения используют водовоздушную смесь. Хлорид магния, входящий в состав солевого отхода, является гигроскопичным материалом, и наличие воды в воздушной смеси приведет к его гидролизу. Из-за этого готовый продукт будет обладать высокой слеживаемостью, что ухудшает его загрузку, транспортировку и хранение, и соответственно качественные характеристики готового продукта становятся хуже. Кроме того, при гидролизе происходит выделение хлорида водорода, который является токсичным. Это приведет к загрязнению окружающей среды и ухудшению условий обслуживания.

Известен способ переработки солевых отходов, содержащих хлориды щелочных и щелочноземельных металлов, например отработанного электролита магниевого производства (кн. Электролитическое получение магния. - Щеголев В.И., Лебедев О.А. - М.: Издательский дом «Руда и металлы», 2002. - стр.242-243), по количеству общих признаков принятый за ближайший аналог-прототип и включающий диспергирование расплава отработанного электролита струей сжатого воздуха в камере распыления и охлаждение в этой же камере получаемых при диспергировании частиц воздухом, продуваемым вентилятором через камеру. Способ предусматривает стадии диспергирования и охлаждения частиц в одной камере распыления.

Недостатком данного способа переработки солевых отходов является образование неоднородного по гранулометрическому составу порошка, содержащего 10-12% пылевидной фракции. Кроме того, данный способ направлен на переработку отработанного электролита с содержанием хлорида магния не более 7 мас.%, который обладает высокой степенью гигроскопичности. Из-за этого готовый продукт обладает высокой слеживаемостью, что ухудшает его загрузку, транспортировку и хранение, и соответственно качественные характеристики готового продукта становятся хуже. Кроме того, охлаждение солевых гранул проводят одновременно со стадией диспергирования в камере распыления, что приводит к образованию застойных зон в камере распыления и снижает выход готового продукта. Значительная гигроскопичность хлорида магния не позволяет использовать для улавливания пылевидных частиц рукавные фильтры, поскольку они часто забиваются, что приводит к значительным эксплуатационным издержкам на их очистку.

Гидролиз хлорида магния приводит к образованию хлорида водорода, который загрязняет окружающую среду и ухудшает условия обслуживания камеры.

Технический результат направлен на устранения недостатков прототипа и позволяет за счет исключения гидролиза и за счет снижения осаждения частиц солевого отхода на стенках камеры распыления и камеры охлаждения повысить извлечение целевого продукта, снизить капитальные и эксплуатационные затраты и уменьшить слеживаемость готового продукта.

Технический результат достигается тем, что предложен способ переработки солевых отходов, содержащих хлориды щелочных и/или щелочноземельных металлов, включающий подачу солевого отхода в виде расплава в камеру распыления, продувание расплава сжатым воздухом с получением дисперсных частиц и охлаждение полученных частиц воздухом, новым является то, что сжатый воздух перед подачей в камеру распыления сушат и подают в камеру распыления одновременно и перекрестно с расплавом солевого отхода в объемном соотношении солевой отход: осушенный воздух, равном 1:(300-700), охлаждение дисперсных частиц ведут в отдельной камере, при этом смесь дисперсных частиц и воздуха направляют из камеры распыления в камеру охлаждения со скоростью, равной 300-500 м/с, и перекрестно движению воздуха, подаваемого в камеру охлаждения снизу через отверстия.

Кроме того, сжатый воздух сушат при температуре точки росы ниже минус 40°С.

Кроме того, расплав солевого отхода обрабатывают сухим сжатым воздухом до температуры 300-350°С.

Кроме того, сухой сжатый воздух подают при давлении 0,3-0,5 мПа.

Кроме того, количество воздуха, подаваемого на охлаждение в камеру охлаждения, составляет 1500-6000 м3 на 1 тонну частиц солевого отхода.

Кроме того, размер частиц, полученных при диспергировании, составляет 0,4-2,5 мм.

Обработка солевых отходов осушенным сжатым воздухом при давлении 0,3-0,5 мПа и при объемном соотношении расплавленный солевой отход: осушенный воздух, равном 1:(300-700), позволяет снизить гидролиз хлорида магния, входящего в состав отхода, и тем самым снизить слеживаемость полученных гранул, кроме того, уменьшить осаждение частиц в камере распыления и тем самым снизить трудозатраты на извлечение осажденного солевого отхода.

Охлаждение полученных частиц раздельно в другой камере при количественной подаче воздуха, подаваемого на охлаждение в камеру охлаждения, равной 1500-6000 м3 на 1 тонну частиц солевого отхода, позволяет уменьшить пылеунос дисперсных частиц и тем самым повысить выход готового продукта.

Подобранные экспериментально температура и скорость вывода смеси частиц отработанного электролита и воздуха позволяют избежать их осаждения в камере распыления и тем самым уменьшить трудозатраты на извлечение осажденного солевого отхода из камеры.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными (идентичными) всем существенным признакам изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе переработки солевых отходов, содержащих хлориды щелочных и/или щелочно-земельных металлов, изложенных в пунктах формулы изобретения. Следовательно, заявленное изобретение соответствует условию "новизна"

Для проверки соответствия заявленного изобретения условию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. Заявленные признаки являются новыми и не вытекают явным образом для специалиста из уровня техники, поскольку определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований для достижения технического результата. Следовательно, заявленное изобретение соответствует условию "изобретательский уровень".

Примеры осуществления способа.

Пример 1. В качестве солевого отхода, содержащего хлориды щелочных и/или щелочноземельных металлов, используют хлорид магния, который получают при химическом взаимодействии тетра-хлорида титана с магнием с получением губчатого титана и хлорида магния состава, мас.%: 97,4 MgCl2, 0,43 KCl, 0,55 NaCl, 0,1 CaCl2, 0,62 MgO, 0,006 SiO2, 0,015 Fe, 0,035 C, 0,02 SO4-2. Часть хлорида магния поступает на процесс электролиза для получения металлического магния, а излишки хлорида магния направляют на получение товарной продукции в виде дисперсных частиц или гранул. Для этого хлорид магния в расплавленном виде при температуре 720°С заливают в тигель, установленный в нагревательную печь. В тигле расплав хлорида магния постоянно перемешивают и центробежным насосом подают перекрестно через воронку в камеру распыления, выполненную в виде распыливающего прямоточного сопла. Сжатый воздух из компрессора перед подачей в сопло предварительно сушат на установке для осушки воздуха типа УОВ-100 до точки росы минус 40°С и также одновременно с расплавом хлорида магния подают при давлении 0,4 мПа в количестве 350 м3 на 1 м3 расплава (что соответствует соотношению расплав:осушенный воздух, равному 1:350) в камеру распыления. Расплавленный хлорид магния при обработке осушенным сжатым воздухом кристаллизуется и охлаждается до температуры 300°С. Смесь частиц хлорида магния и воздуха при температуре 300°С и при скорости 400 м/с направляют в камеру охлаждения. Подобранные экспериментально температура и скорость вывода смеси частиц хлорида магния и воздуха позволяют избежать их осаждения в камере распыления и тем самым уменьшить трудозатраты на процесс. Поступившие в камеру охлаждения частицы хлорида магния обрабатывают перекрестно воздухом, который подают вентилятором снизу через отверстия, выполненные в днище камеры охлаждения, в количестве, равном 3500 м3 на 1 тонну охлаждаемых частиц хлорида магния. Охлаждение проводят до температуры 60°С и ниже. Полученные частицы хлорида магния по гранулометрическому составу (около 95% от общего количества) соответствуют размеру 0,4-2,5 мм и осаждаются на днище камеры охлаждения, откуда их непрерывно удаляют скребковым транспортером. Получены частицы безводного хлорида магния, который соответствует ТУ 48-0513-46-84 следующего химического состава, мас.%: MgCl2 - не менее 97, MgO - не более 0,5, другие примеси - не более 2,5. Мелкие частицы (около 5%) вместе с воздухом выводят через крышку камеры охлаждения по газоходу в систему газоочистки, выполненную в виде скрубберов. В скрубберах происходит очистка щелочным реагентом в режиме рециркуляции. Полученный гранулированный хлорид магния направляют для изготовления цементов (например, цемента Сореля), магнезии, применяемой в качестве аппретуры в текстильной промышленности и для пропитки деревянных конструкций с целью придания им огнестойкости, в качестве дефолианта, антифриза, противогололедного препарата и др.

Пример 2. В качестве солевого отхода, содержащего хлориды щелочных и/или щелочноземельных металлов, применяют отработанный электролит магниевого электролизера состава, мас.%: хлорид калия 70-75, хлорид магния 4-10, оксид магния 0,1-0,8, остальное хлорид натрия и примеси, который является отходом производства магния электролизом хлормагниевых солей. Процесс электролиза осуществляют при циркуляции расплавленных солей в электролизере, при подаче постоянного тока на анод и катод. В процессе электролиза хлормагниевого сырья на аноде выделяется хлор, а на катоде - магний. По мере работы электролизера происходит снижение содержания хлорида магния в расплаве и при концентрации хлорида магния в расплаве менее 7% необходимо заливать новые порции сырья. Для этого необходимо освобождать часть объема ванны, удаляя из нее некоторое количество так называемого отработанного электролита. Расплавленный отработанный электролит удаляют в процессе электролиза не реже двух раз в сутки в количестве 4-5 тонн отработанного электролита на 1 тонну готового продукта - магния. Расплав отработанного электролита направляют на получение товарной продукции в виде дисперсных частиц или гранул, которые находят применение в качестве удобрения, противогололедного препарата, флюса и др. Для всех видов товарной продукции жесткие требования предъявляются к содержанию воды (повышенная слеживаемость, необходимость повторной осушки у потребителя). Отработанный электролит в расплавленном виде при температуре 720°С заливают в тигель, установленный в нагревательную печь. В тигле расплав отработанного электролита перемешивают и центробежным насосом подают через воронку в камеру распыления, выполненную в виде распыливающего прямоточного сопла. Сжатый воздух из компрессора перед подачей в сопло предварительно сушат на установке для осушки воздуха типа УОВ-100 до точки росы минус 40°С и подают перекрестно и одновременно с расплавленным отработанным электролитом в камеру распыления в количестве 300 м3 на 1 м3 расплавленного отработанного электролита (что соответствует объемному соотношению 1:300). При этом давление осушенного сжатого воздуха поддерживают 0,4 мПа. Расплавленный отработанный электролит при обработке осушенным сжатым воздухом кристаллизуют и охлаждают до температуры 300°С. Смесь частиц отработанного электролита с воздухом при температуре 300°С и при скорости 400 м/с направляют в камеру охлаждения. Поступившие в камеру охлаждения частицы отработанного электролита обрабатывают перекрестно воздухом, который подают снизу через отверстия, выполненные в днище камеры охлаждения, в количестве, равном 3500 м3 воздуха, на 1 тонну охлажденных частиц отработанного электролита. Охлаждение проводят до температуры 60°С и ниже. Полученные частицы отработанного электролита по гранулометрическому составу (около 95% от общего количества) соответствуют размеру 0,4-2,5 мм и осаждаются на днище камеры охлаждения, откуда их удаляют скребковым транспортером. Полученные частицы безводного отработанного электролита соответствуют требованиям ТУ. Мелкие частицы (около 5%) вместе с воздухом выводят через крышку камеры охлаждения по газоходу в систему газоочистки, выполненную в виде скрубберов. В скрубберах происходит очистка газов щелочным реагентом в режиме рециркуляции.

1.Способпереработкисолевыхотходов,содержащиххлоридыщелочныхи/илищелочноземельныхметаллов,включающийподачусолевогоотходаввидерасплаваисжатоговоздухавкамерураспыления,продуваниерасплавасжатымвоздухомсполучениемдисперсныхчастициохлаждениеполученныхчастицвоздухом,отличающийсятем,чтосжатыйвоздухпередподачейвкамерураспылениясушатиподаютвкамерураспыленияодновременноиперекрестносрасплавомсолевогоотходавобъемномсоотношениисолевойотход:осушенныйвоздух,равном1:(300-700),охлаждениедисперсныхчастицведутвотдельнойкамере,приэтомсмесьдисперсныхчастицивоздуханаправляютизкамерыраспылениявкамеруохлаждениясоскоростью300-500м/сиперекрестнодвижениювоздуха,подаваемоговкамеруохлажденияснизучерезотверстия.12.Способпоп.1,отличающийсятем,чтосжатыйвоздухсушатпритемпературеточкиросынижеминус40°С.23.Способпоп.1,отличающийсятем,чторасплавсолевогоотходаобрабатываютсухимсжатымвоздухомдотемпературы300-350°С.34.Способпоп.1,отличающийсятем,чтосухойсжатыйвоздухподаютпридавлении0,3-0,5мПа.45.Способпоп.1,отличающийсятем,чтоколичествовоздуха,подаваемогонаохлаждениевкамеруохлаждения,составляет1500-6000мна1тчастицсолевогоотхода.56.Способпоп.1,отличающийсятем,чторазмердисперсныхчастиц,полученныхпридиспергировании,составляет0,4-2,5мм.6
Источник поступления информации: Роспатент

Показаны записи 21-30 из 69.
27.08.2015
№216.013.7536

Способ изготовления крупногабаритных слитков прямоугольного сечения из высокопрочных алюминиевых сплавов системы al-zn-mg-cu-zr

Изобретение относится к металлургии. Лигатуру алюминий-цирконий, технический алюминий и отходы загружают в центральную часть печного пространства с температурой 740-750°C. В расплав вводят лигатуру алюминий-бериллий при температуре 730-740°C, магний и цинк с температурой 710-730°C и после...
Тип: Изобретение
Номер охранного документа: 0002561581
Дата охранного документа: 27.08.2015
10.05.2016
№216.015.3b23

Способ изготовления холоднодеформированных бесшовных труб из титанового сплава ti-3al-2,5v

Изобретение относится к области металлургии, а именно к изготовлению холоднодеформированных бесшовных труб из титанового сплава Ti-3Al-2,5V. Способ включает производство слитков, ковку слитка в цилиндрическую заготовку за несколько переходов с чередованием деформации в β- и (α+β)-областях....
Тип: Изобретение
Номер охранного документа: 0002583566
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d82

Способ получения особо тонких листов из титанового сплава ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si

Изобретение относится к обработке металлов давлением, а именно к способам изготовления особо тонких листов из высокопрочного псевдо-альфа титанового сплава Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si. Способ получения особо тонких листов из титанового сплава Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si включает...
Тип: Изобретение
Номер охранного документа: 0002583567
Дата охранного документа: 10.05.2016
20.02.2019
№219.016.bce5

Способ механической обработки труб и устройство для его осуществления

Изобретения относятся к области обработки металлов резанием, обработке трубных заготовок для уменьшения их разностенности перед прокаткой, финишным операциям обработки нежестких труб. Способ включает обработку наружной поверхности закрепленной одним концом в плавающем патроне переднего ведущего...
Тип: Изобретение
Номер охранного документа: 0002288076
Дата охранного документа: 27.11.2006
20.02.2019
№219.016.bec2

Способ переработки карналлитовой пыли из циклонов печи кипящего слоя

Изобретение относится к способу переработки карналлитовой пыли из циклонов печи кипящего слоя. Способ включает последовательную загрузку расплавленного отработанного электролита и расплавленного хлорида магния при массовом соотношении, равном 1:(1,1-1,4), в емкость. Затем загружают...
Тип: Изобретение
Номер охранного документа: 0002395456
Дата охранного документа: 27.07.2010
20.02.2019
№219.016.bf04

Способ получения расходуемого электрода

Изобретение относится к электрометаллургии и может быть использовано для выплавки слитков высокореакционных металлов и сплавов, в т.ч. слитков титана и его сплавов. Способ включает заливку твердой металлической составляющей жидким металлом. В качестве твердой металлической составляющей...
Тип: Изобретение
Номер охранного документа: 0002313590
Дата охранного документа: 27.12.2007
20.02.2019
№219.016.bf1b

Электродуговой плазмотрон

Изобретение относится к области плазменной техники, а именно к конструкции плазмотронов, применяемых в металлургической промышленности в качестве источника нагрева. Предлагаемый электродуговой плазмотрон содержит полый цилиндрический корпус, в котором соосно установлены полый цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002387107
Дата охранного документа: 20.04.2010
20.02.2019
№219.016.bfb4

Способ получения флюса для плавки и рафинирования магния или его сплавов

Изобретение относится к цветной металлургии, в частности к получению флюса для плавки и рафинирования магния или его сплавов. В обогреваемую емкость загружают твердую соль в виде твердого хлорида магния крупностью частиц менее 100 мм, заливают расплавленную соль в виде отработанного...
Тип: Изобретение
Номер охранного документа: 0002378397
Дата охранного документа: 10.01.2010
20.02.2019
№219.016.bfe6

Способ получения низших хлоридов титана в смеси расплавленных хлоридов металлов и установка для его осуществления

Изобретение относится к получению низших хлоридов титана, применяемых в качестве флюса для очистки магния или магниевых сплавов от примесей. Способ получения низших хлоридов титана в смеси расплавленных хлоридов металлов включает заливку смеси расплавленных хлоридов в аппарат, загрузку...
Тип: Изобретение
Номер охранного документа: 0002370445
Дата охранного документа: 20.10.2009
20.02.2019
№219.016.c0dd

Способ определения кристаллографической текстуры осесимметричных заготовок

Использование: для определения кристаллографической текстуры осесимметричных заготовок. Сущность: заключается в том, что проводят подготовительный этап получения тарировочных зависимостей, включающий стадию рентгеновского анализа, состоящую из отбора образцов, съемки трех обратных полюсных...
Тип: Изобретение
Номер охранного документа: 0002366934
Дата охранного документа: 10.09.2009
Показаны записи 21-30 из 62.
10.06.2016
№216.015.4552

Способ получения губчатого титана

Изобретение относится к получению губчатого титана. Готовят смесь тетрахлорида титана и тетрахлорида углерода при соотношении 1:(0,009-0,01) и подают на восстановление металлическим магнием при избыточном давлении аргона. Восстановление проводят при скорости подачи смеси не более 100 кг/ час, а...
Тип: Изобретение
Номер охранного документа: 0002586187
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7880

Способ получения губчатого титана

Изобретение относится к магниетермическому получению губчатого титана. Способ включает заливку магния в реторту, подачу тетрахлорида титана и проведение процесса восстановления тетрахлорида титана магнием при подаче тетрахлорида титана в количестве, меньшем его теоретического количества в...
Тип: Изобретение
Номер охранного документа: 0002599071
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c60

Способ переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана

Изобретение относится к способу переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана. Способ включает отгонку тетрахлорида титана из медно-ванадиевой пульпы с получением кубового остатка . Смесь раствора гидроксида натрия карбоната натрия подают на выщелачивание кубового...
Тип: Изобретение
Номер охранного документа: 0002600602
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.a34a

Установка для очистки промышленных и ливневых сточных вод титано-магниевого производства

Изобретение относятся к области очистки промышленных и ливневых сточных вод титаномагниевого производства. Установка для очистки промышленных и ливневых сточных вод включает камеры, соединенные между собой в следующей последовательности: нефтеловушка 2 соединена с камерой обеззараживания...
Тип: Изобретение
Номер охранного документа: 0002607220
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ac2c

Способ приготовления шихты для выплавки титановых шлаков в рудно-термической печи

Изобретение относится к металлургии, а именно к получению металлического титана из титановых шлаков, в частности к подготовке шихты для выплавки титановых шлаков в рудно-термической печи. Способ включает дробление углеродистого восстановителя, дозирование и смешивание его с ильменитовым...
Тип: Изобретение
Номер охранного документа: 0002612332
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.c9bf

Титансодержащая шихта для получения тетрахлорида титана и способ ее приготовления

Группа изобретений относится к металлургии титана. Титансодержащая шихта для получения тетрахлорида титана содержит титановый шлак, углеродсодержащий материал, хлорид натрия, измельченную формованную смесь из угольных отходов, полученных с фильтров по очистке газов при сушке и транспортировке...
Тип: Изобретение
Номер охранного документа: 0002619427
Дата охранного документа: 15.05.2017
26.08.2017
№217.015.d84a

Установка для получения порошка из титановой губки и способ его получения

Группа изобретений относится к получению порошка из губчатого титана. Установка снабжена герметичной системой, состоящей из дозирующего устройства, роторной дробилки с патрубком для загрузки губчатого титана, патрубком для выгрузки порошка, патрубком для подачи аргона и патрубком для вывода...
Тип: Изобретение
Номер охранного документа: 0002622501
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.ebfb

Способ получения порошка титана

Изобретение относится к получению порошка титана. Способ включает загрузку губчатого титана в реторту, вакуумирование и нагрев его в вакууме, подачу водорода в реторту с обеспечением гидрирования губчатого титана при одновременном охлаждении реторты, извлечение гидрированного губчатого титана...
Тип: Изобретение
Номер охранного документа: 0002628228
Дата охранного документа: 17.08.2017
20.01.2018
№218.016.15be

Способ получения легированного губчатого титана

Изобретение относится к cпособу получения легированного губчатого титана, содержащего ванадий. Способ включает приготовление смеси очищенного тетрахлорида титана и очищенного тетрахлорида ванадия. Очищенный тетрахлорид ванадия получают хлорированием очищенного окситрихлорида ванадия...
Тип: Изобретение
Номер охранного документа: 0002635211
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1910

Способ обезвреживания пульпы гипохлорита кальция

Изобретение может быть использовано в химической промышленности при обезвреживании гипохлоритных пульп, образующихся в процессе очистки отходящих хлорсодержащих газов от хлора известковым молоком. Способ обезвреживания пульпы гипохлорита кальция включает термическое разложение гипохлорита...
Тип: Изобретение
Номер охранного документа: 0002636082
Дата охранного документа: 20.11.2017
+ добавить свой РИД