×
26.08.2017
217.015.ebfb

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ТИТАНА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к получению порошка титана. Способ включает загрузку губчатого титана в реторту, вакуумирование и нагрев его в вакууме, подачу водорода в реторту с обеспечением гидрирования губчатого титана при одновременном охлаждении реторты, извлечение гидрированного губчатого титана из реторты, его измельчение и рассев на фракции, загрузку измельченного гидрированного порошка титана в реторту, его дегидрирование, охлаждение реторты и извлечение порошка титана. Водород подают в реторту со скоростью не более 360 м/час на 1 м сечения реторты с обеспечением избыточного давления водорода в реторте не более 44 кПа. Гидрированный губчатый титан измельчают в атмосфере аргона при избыточном давлении не более 10-20 кПа, а дегидрирование ведут путем герметизации реторты, ее вакуумирования до остаточного давления 0,01 кПа, нагрева и подачи аргона с обеспечением избыточного давления 10-30 кПа, при этом удаляют выделяющийся при дегидрировании водород совместно с аргоном с обеспечением остаточного давления 0,01 кПа и производят термическую выдержку в течение 3-5 часов. Обеспечивается получение порошка титана заданной формы - осколочного, игольчатого типа, с пониженным содержанием газовых примесей, таких как водород, азот, хлор и кислород. 1 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к порошковой металлургии, в частности к способам получения металлических порошков термохимической обработкой методом гидрирования и дегидрирования металлов, и может быть использовано для получения порошков титана.

Известен способ получения порошков титана термохимической обработкой методом гидрирования и дегидрирования титана (кн. Титан. - Гармата В.А., Петрунько А.Н., Галицкий Н.В., Олесов Ю.Г., Сандлер Р.А. - М.: Металлургия, 1983, с. 489-490), включающий нагрев губчатого титана до температуры 350-450°С в вакууме, подачу в реторту водорода, гидрирование титана с саморазогревом материала за счет тепла гидрирования до 550-600°С, ступенчатое (остановка на 0,5-2 часа через 50-100°С) охлаждение реторты в атмосфере водорода до 250-350°С, охлаждение реторты с гидридом до комнатной температуры в среде аргона или водорода, извлечение гидрированного порошка титана, измельчение и дегидрирование водорода из порошков титана. В случае гидрирования высококачественного губчатого титана полученные порошки содержат низкое содержание примесей и пригодны для изготовления различных изделий методами порошковой металлургии.

Недостатком указанного способа получения порошков титана является низкое их качество за счет неполного удаления водорода из порошков. Кроме того, за счет резкого увеличения удельной поверхности при размоле гидрида титана и неизбежного образования оксидных пленок содержание газовых примесей в порошках титана повышается на 15-30 масс. % по сравнению с исходным титаном. Это ограничивает применение порошков титана в специальных сплавах особого назначения.

Известен способ получения мелкодисперсного порошка титана термохимической обработкой методом гидрирования и дегидрирования титана (патент РФ №2301723, опубл. 27.06.2007), включающий загрузку исходной титановой губки в герметичную реторту, проведение вакуумного отжига (термическую активацию) материала при температуре 400-650°C в течение 2 часов, гидрирование исходного титана до содержания водорода от 440 до 468 см3 на 1 г титана с одновременным охлаждением реторты. После охлаждения реторты гидрид титана извлекают из реторты и измельчают в шаровой мельнице до порошка гидрида титана, имеющего удельную поверхность, в 2-3 раза большую, чем у получаемого порошка титана. Полученный порошок гидрида титана вновь загружают в реторту на тарелки с толщиной слоя до 30 мм и проводят дегидрирование порошка в несколько стадий. Первую стадию дегидрирования (разложения) осуществляют при температуре 500°C при постоянной откачке реторты вакуумным насосом в течение 6,5 часов. После охлаждения реторты до комнатной температуры извлеченный порошок вновь измельчают в шаровой мельнице. Затем полученный порошок вновь загружают в реторту и проводят вторую стадию дегидрирования (разложения) гидрида титана при температуре 600°C в течение 45 часов при достижении в реторте конечного давления 2,7 Па. Полученный порошок титана измельчают в шаровой мельнице до размера частиц менее 40 мкм с удельной поверхностью 1,2 м2/г с остаточным содержанием водорода 2,5 см3 на 1 г титана.

Недостатком указанного способа получения порошков титана является то, что за счет резкого увеличения удельной поверхности при размоле гидрида титана и неизбежного образования оксидных пленок содержание газовых примесей в порошках титана повышается на 15-30 масс. % по сравнению с исходным титаном. Учитывая, что в предложенном способе получения порошков гидрида титана его повергают неоднократному измельчению, то в готовом виде порошки титана получают низкого качества, что не позволяет их использовать в областях, в которых необходимо соблюдать особые требования к содержанию газовых примесей и технологическим свойствам порошков титана.

Известен способ термохимической обработки губчатого титана с получением порошков титана с улучшенными технологическими и специальными свойствами (ст. Получение порошков титана термохимической переработкой губчатого титана. - Петрунько А.Н., Дрозденко В.А. - Ж. Титан, 2005 г., №1, с. 17-23). Титан губчатый фракции -5+0,63 мм загружают в реторту, установленную в вакуумную электропечь, герметизируют и создают вакуум. Титан губчатый нагревают в вакууме до температуры 350-450°C, подают водород по трубопроводу при давлении менее 1,62⋅105 Па, проводят процесс гидрирования с саморазогревом гидрируемого материала за счет тепла реакции до 550-600°C. Затем гидрированный порошок титана ступенчато охлаждают в среде водорода до температуры 250-350°C и затем охлаждают в среде аргона до комнатной температуры. Реторту с гидрированным порошком титана устанавливают на кантователь, выгружают порошок на поддон, производят рассев порошка на фракции и дробление в шаровой мельнице до крупности менее 0,1 мм. Затем гидрированный порошок титана подвергают дегидрированию по обычной технологии. Порошок титана после дегидрирования содержит примеси, масс. %: азот 0,06, хлор 0,05, железо 0,08, кислород 0,09.

Недостатком указанного способа получения порошков титана является низкое качество порошков титана за счет неполного удаления водорода из порошков. Кроме того, за счет резкого увеличения удельной поверхности при размоле гидрида титана и неизбежного образования оксидных пленок содержание газовых примесей в порошках титана повышается на 15-30 масс. % по сравнению с исходным титаном. Это ограничивает применение порошков титана в специальных сплавах особого назначения.

Известен способ получения порошков титана термохимической обработкой (см. кн. Порошковая металлургия титана. - Устинов B.C., Олесов Ю.Г., Дрозденко В.А., Антипин Л.Н. - М.: Металлургия, 1981, с. 42-70), по количеству общих признаков принятый за ближайший аналог-прототип и включающий загрузку измельченного на фракции губчатого титана марки ТГ100 в реторту, установленную в вакуумную печь. Реторту вакуумируют, нагревают до температуры 700°C, затем губчатый титан охлаждают до температуры 350-450°C и начинают подавать водород. Во время подачи водорода и проведения процесса гидрирования наступает саморазогрев материала за счет тепла гидрирования до температуры 550-600°C. Режимы гидрирования: температура 500°C, время гидрирования в печи 1 час, расход водорода при гидрировании в печи 4 м3/час, при дальнейшем гидрировании при охлаждении 2 м3/час. Затем проводят процесс охлаждения с одновременным процессом гидрирования губчатого титана. При охлаждении поглощение водорода губчатым титаном составляет 85 масс. % от общего количества водорода при содержании водорода в губчатом титане, равном 3,75-3,89 масс. % (см. табл. 10, стр. 43). Затем реторту извлекают из печи, устанавливают на стенд для охлаждения до комнатной температуры. После охлаждения полученный гидрированный порошок титана извлекают из реторты, рассеивают на фракции, а выделенную фракцию -1+0,16 мм подвергают измельчению в шаровой мельнице при продолжительности измельчения не более 0,5-0,7 часа, отношение массы шаров к массе гидрида титана 2,5-3,0, число оборотов барабана 0,75 nкр. Для уменьшения загрязнения порошков гидрида титана кислородом и азотом используют в качестве защитной среды при размоле (измельчении) различные вещества: толуол, воду, четыреххлористый углерод, этиловый спирт, галоидные соли щелочных металлов, йод, ПАВ и др. При нагреве гидрированного порошка титана до температуры 300-400°C начинают процесс дегидрирования (процесс его разложения и выделения водорода). Для этого гидрированные порошки титана помещают в герметичный реактор, вакуумируют с постепенным нагревом до 750°С и удалением водорода из реторты. Для дегидрирования применяют различные типы аппаратов кипящего слоя, ретортный аппарат с дегидрированием в слое, аппарат высокотемпературного скоростного дегидрирования. Получают порошок титана следующего качества, масс. %: азот 0,06, хлор 0,06, кислород 0,09, водород 0,18.

Недостатком указанного способа получения порошков титана является низкое качество порошков титана за счет неполного удаления водорода из порошков. Кроме того, за счет резкого увеличения удельной поверхности при размоле гидрида титана и неизбежного образования оксидных пленок содержание газовых примесей в дегидрированном порошке титана повышается на 15-30 масс. % по сравнению с исходным титаном. Особенно нежелательно наличие в порошке примесей кислорода, содержание которого после процесса дегидрирования повышается на 20-50 масс. %. Это ограничивает применение порошков титана в специальных сплавах особого назначения.

Технический результат направлен на устранение недостатков прототипа и позволяет получить порошки титана заданной формы - осколочного, игольчатого типа, с пониженным содержанием газовых примесей в порошке титана, таких как водород, азот, хлор и кислород.

Задачей, на которую направлено изобретение, является повышение качества порошка титана и получение порошка титана заданной, определенной формы.

Технический результат достигается тем, что в предложенном способе получения порошка титана, включающем загрузку губчатого титана в реторту, вакуумирование и нагрев его в вакууме, подачу водорода в реторту с обеспечением гидрирования губчатого титана при одновременном охлаждении реторты, извлечение гидрированного губчатого титана из реторты, его измельчение и рассев на фракции, загрузку измельченного гидрированного порошка титана в реторту, его дегидрирование, охлаждение реторты и извлечение порошка титана, новым является то, что водород подают в реторту со скоростью не более 360 м3/час на 1 м2 сечения реторты с обеспечением избыточного давления водорода в реторте не более 44 кПа, при этом гидрированный губчатый титан измельчают в атмосфере аргона при избыточном давлении не более 10-20 кПа, а дегидрирование ведут путем герметизации реторты, ее вакуумирования до остаточного давления 0,01 кПа, нагрева и подачи аргона с обеспечением избыточного давления 10-30 кПа, при этом удаляют выделяющийся при дегидрировании водород совместно с аргоном с обеспечением остаточного давления 0,01 кПа и производят термическую выдержку в течение 3-5 часов.

Кроме того, термическую выдержку ведут при абсолютном давлении до 0,01 кПа и температуре до 600°С.

Подача водорода в реторту со скоростью не более 360 м3/час на 1 м2 сечения реторты до избыточного давления в реторте не более 44 кПа позволяет улучшить качество гидрированного порошка титана за счет исключения спекания порошка и получить порошок титана определенной формы осколочного и игольчатого типа.

Измельчение гидрированного губчатого титана в атмосфере аргона при избыточном давлении не более 10-20 кПа позволяет улучшить качество порошков титана за счет уменьшения контакта гидрированного губчатого титана с воздухом при его размоле и исключения образования оксидных пленок.

Проведение дегидрирования путем герметизации реторты, ее вакуумирования до остаточного давления 0,01 кПа, нагрева и подачи аргона с обеспечением избыточного давления 10-30 кПа после загрузки измельченных гидрированных порошков в реторту, а после удаления выделяющегося при дегидрировании водорода совместно с аргоном с обеспечением остаточного давления 0,01 кПа и термической выдержки в течение 3-5 часов позволяет улучшить качество порошка титана за счет уменьшения содержания водорода в порошке. Как показали лабораторные исследования, проведение дегидрирования в токе аргона позволяет наиболее полно удалить водород из порошка не более 0,02 масс. %.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными (идентичными) всем существенным признакам изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности признаков аналога позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения порошка титана, изложенных в пунктах формулы изобретения. Следовательно, заявленное изобретение соответствует условию "новизна".

Для проверки соответствия заявленного изобретения условию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа получения порошка титана. В заявленном изобретении имеется новая совокупность признаков, выразившаяся в новой последовательности действий во времени, в сокращении дополнительных операций способа и новых условий осуществления способа. Следовательно, заявленное изобретение соответствует условию "изобретательский уровень".

Промышленную применимость предлагаемого изобретения подтверждает следующий пример осуществления способа получения порошка титана.

Для получения титанового порошка с использованием гидрирования-дегидрирования титановой губки взяли 5 кг губчатого титана фракции -12+2 мм, которую загрузили в реторту с внутренним диаметром 145 мм и высотой 395 мм. Реторту герметизируют крышкой, на которой выполнены патрубки для подачи аргона, вакуумирования и в центре крышки - патрубок для подачи водорода. Реторту установили в вакуумную печь типа СШВ. После герметизации из реторты откачали воздух (вакуумировали) до абсолютного давления 0,016 кПа. После этого, не отключая реторту от вакуумной системы, начали ее ступенчатый разогрев, сделав на последней ступени уставку на печи на температуре 350°С. После выдержки в течение примерно 1 часа при температуре от 345 до 370°С реторту отключили от вакуумной системы и через центральный патрубок крышки реторты начали подачу водорода. В течение процесса водород подавали со скоростью не более 360 м3/час на 1 м2, а избыточное давление водорода не превышало 44 кПа. В начале процесс идет очень бурно - его скорость лимитируется только скоростью подачи водорода. Эта стадия длится 20-30 минут, и за это время усваивается половина водорода от количества водорода, усвоенного в течение всего процесса. При этом губчатый титан разогревается до 786°С. Поэтому после начала подачи водорода отключили обогрев печи. Далее процесс идет с убывающей скоростью при стабильном давлении, что указывает на переход в диффузионный режим (скорость процесса гидрирования определяется диффузией водорода в титане, которая уменьшается с увеличением толщины наводороженного слоя). Через 3,5 часа после начала процесса избыточное давление водорода снизили с 44 кПа до 8-16 кПа. Затем реторту с 5,202 кг гидрированным губчатым титаном извлекают из печи, устанавливают на стенд для охлаждения реторты до комнатной температуры. Содержание водорода в полученном гидрированном губчатом титане составляет 3,81-4,1 масс. %. После охлаждения полученный гидрированный губчатый титан извлекают из реторты, рассеивают на вибросите на фракции, а выделенную фракцию +0,63 мм гидрированного губчатого титана подвергают измельчению в шаровой мельнице. Наилучшие результаты в процессе измельчения гидрированной титановой губки получили на шаровой мельнице (внутренние размеры - ∅440 мм × 470 мм, скорость вращения - 56 об/мин). Для измельчения 2,470 кг гидрированной титановой губки фракции +0,63 мм взяли 10 кг титановых шаров диаметром от 40 до 60 мм. Во избежание возгорания и с целью предотвращения окисления гидрированного губчатого титана в шаровой мельнице создали инертную атмосферу, откачав из нее воздух до избыточного давления примерно 100 кПа, а затем задав аргон до избыточного давления примерно 20 кПа. После 3 минут вращения шаров в шаровой мельнице получили измельченный гидрированный порошок титана, который рассеяли на вибросите на фракции: +0,63 мм, -0,63+0,16 мм и -0,16 мм. Полученный измельченный гидрированный порошок титана имеет осколочную форму. Каждую фракцию гидрированного порошка титана разместили на полочках этажерки, установленной соосно реторте. Реторту закрыли крышкой и установили в вакуумную печь. После герметизации реторты провели откачку воздуха (вакуумирование) из реторты до остаточного давления 0,01 кПа и приступили к разогреву реторты до 600°С. После разогрева в реторту задали аргон с обеспечением избыточного давления 30 кПа, после приступили к откачке выделившегося в процессе дегидрирования водорода совместно с аргоном из реторты с обеспечением остаточного давления 0,01 кПа. Затем реторту выдержали в течение 4 часов при давлении 0,01 кПа и температуре 600°С. Реторту извлекли из печи и охладили до комнатной температуры. После охлаждения извлекли с полочек этажерки порошки титана разной фракции. В результате аналитического контроля получили порошки следующего химического состава, масс. %: азот 0,03, хлор 0,06, кислород 0,06, углерод 0,02, кремний 0,02, железо 0,06, водород 0,02-0,18. Насыпная плотность 1,7-1,8 г/см3, форма частиц - осколочная, иглообразная.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 33.
27.02.2013
№216.012.2b5a

Способ получения магния и хлора электролизом расплавленных солей и технологическая схема для его осуществления

Изобретение относится к цветной металлургии, а именно к устройствам для получения магния электролизом расплавленных солей. Расплавленное хлормагниевое сырье подают в сборные ячейки группы электролизеров и проводят электролиз в электролитических отделениях с боковым вводом катодов и с верхним...
Тип: Изобретение
Номер охранного документа: 0002476625
Дата охранного документа: 27.02.2013
27.06.2013
№216.012.4fdb

Устройство для резки блока губчатого титана

Изобретение относится к металлообработке цветных металлов и цветной металлургии. Стол жестко прикреплен к станине и снабжен стенками для установки блока. Силовая рама выполнена с возможностью вертикального перемещения в ней ползуна с режущим инструментом с помощью привода от гидроцилиндра....
Тип: Изобретение
Номер охранного документа: 0002486036
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.53fe

Калийно-магниевое удобрение

Изобретение относится к сельскому хозяйству. Калийно-магниевое удобрение, которое содержит хлориды калия, магния, кальция, натрия и оксид магния, причем оно дополнительно содержит компоненты марганца, ванадия, хрома, цинка, меди и кобальта. Все компоненты взяты при определенном соотношении....
Тип: Изобретение
Номер охранного документа: 0002487105
Дата охранного документа: 10.07.2013
27.08.2013
№216.012.647b

Способ переработки отходов, образующихся при очистке газов рудно-термической печи

Изобретение относится к цветной металлургии, а именно к способу переработки титановых концентратов, полученных из редкометаллического сырья в рудно-термических печах, в частности, к способу переработки отходов, образующихся при очистке отходящих газов, образующихся в процессе плавки титанового...
Тип: Изобретение
Номер охранного документа: 0002491360
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.67ed

Способ получения флюса для плавки и рафинирования магния или его сплавов

Изобретение относится к цветной металлургии. Твердый бромид натрия загружают в обогреваемую емкость, заливают на его поверхность расплавленную соль и нагревают, расплавленную смесь перемешивают и выгружают из емкости в расплавленном состоянии. Расплавленную соль заливают на бромид натрия при...
Тип: Изобретение
Номер охранного документа: 0002492252
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7e23

Способ получения пентаоксида ванадия

Изобретение относится к цветной металлургии и может быть использовано при получении пентаоксида ванадия из окситрихлорида ванадия - побочного продукта производства губчатого титана. Способ включает разложение окситрихлорида ванадия щелочным раствором с получением метаванадата натрия, загрузку...
Тип: Изобретение
Номер охранного документа: 0002497964
Дата охранного документа: 10.11.2013
10.01.2014
№216.012.9424

Печь кипящего слоя для обезвоживания хлормагниевого сырья

Изобретение относится к цветной металлургии. Печь кипящего слоя для обезвоживания хлормагниевого сырья включает корпус 1 печи в виде шахты с патрубком 3 для подачи хлормагниевого сырья и патрубком 4 для вывода готового продукта, стальные компенсаторы со слоем огнеупорной футеровки,...
Тип: Изобретение
Номер охранного документа: 0002503618
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.97ec

Электролизер для насыщения расплава cacl кальцием

Электролизер относится к цветной металлургии и может быть использован для непрерывного электролитического способа получения титана, циркония, урана, бериллия и других редких металлов. Электролизер содержит металлический корпус с анодным и насыщающим отделениями и металлической диафрагмой,...
Тип: Изобретение
Номер охранного документа: 0002504591
Дата охранного документа: 20.01.2014
20.09.2014
№216.012.f539

Способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана

Изобретение относится к способу переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана. Твердые медно-ванадивые отходы выщелачивают водой с получением медно-ванадиевой пульпы, в которую подают гипохлорит кальция или осветленную пульпу газоочистных сооружений титано-магниевого...
Тип: Изобретение
Номер охранного документа: 0002528610
Дата охранного документа: 20.09.2014
10.01.2015
№216.013.1d30

Способ очистки сточных вод титано-магниевого производства

Изобретение может быть использовано для очистки сточных вод титано-магниевого производства. Сточные воды смешивают и отделяют твердые взвеси в песколовке. Полученные стоки нейтрализуют в две стадии известковым молоком при концентрации оксида кальция в известковом молоке, равной не менее 100...
Тип: Изобретение
Номер охранного документа: 0002538900
Дата охранного документа: 10.01.2015
Показаны записи 1-10 из 62.
27.02.2013
№216.012.2b5a

Способ получения магния и хлора электролизом расплавленных солей и технологическая схема для его осуществления

Изобретение относится к цветной металлургии, а именно к устройствам для получения магния электролизом расплавленных солей. Расплавленное хлормагниевое сырье подают в сборные ячейки группы электролизеров и проводят электролиз в электролитических отделениях с боковым вводом катодов и с верхним...
Тип: Изобретение
Номер охранного документа: 0002476625
Дата охранного документа: 27.02.2013
27.06.2013
№216.012.4fdb

Устройство для резки блока губчатого титана

Изобретение относится к металлообработке цветных металлов и цветной металлургии. Стол жестко прикреплен к станине и снабжен стенками для установки блока. Силовая рама выполнена с возможностью вертикального перемещения в ней ползуна с режущим инструментом с помощью привода от гидроцилиндра....
Тип: Изобретение
Номер охранного документа: 0002486036
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.53fe

Калийно-магниевое удобрение

Изобретение относится к сельскому хозяйству. Калийно-магниевое удобрение, которое содержит хлориды калия, магния, кальция, натрия и оксид магния, причем оно дополнительно содержит компоненты марганца, ванадия, хрома, цинка, меди и кобальта. Все компоненты взяты при определенном соотношении....
Тип: Изобретение
Номер охранного документа: 0002487105
Дата охранного документа: 10.07.2013
27.08.2013
№216.012.647b

Способ переработки отходов, образующихся при очистке газов рудно-термической печи

Изобретение относится к цветной металлургии, а именно к способу переработки титановых концентратов, полученных из редкометаллического сырья в рудно-термических печах, в частности, к способу переработки отходов, образующихся при очистке отходящих газов, образующихся в процессе плавки титанового...
Тип: Изобретение
Номер охранного документа: 0002491360
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.67ed

Способ получения флюса для плавки и рафинирования магния или его сплавов

Изобретение относится к цветной металлургии. Твердый бромид натрия загружают в обогреваемую емкость, заливают на его поверхность расплавленную соль и нагревают, расплавленную смесь перемешивают и выгружают из емкости в расплавленном состоянии. Расплавленную соль заливают на бромид натрия при...
Тип: Изобретение
Номер охранного документа: 0002492252
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7e23

Способ получения пентаоксида ванадия

Изобретение относится к цветной металлургии и может быть использовано при получении пентаоксида ванадия из окситрихлорида ванадия - побочного продукта производства губчатого титана. Способ включает разложение окситрихлорида ванадия щелочным раствором с получением метаванадата натрия, загрузку...
Тип: Изобретение
Номер охранного документа: 0002497964
Дата охранного документа: 10.11.2013
10.01.2014
№216.012.9424

Печь кипящего слоя для обезвоживания хлормагниевого сырья

Изобретение относится к цветной металлургии. Печь кипящего слоя для обезвоживания хлормагниевого сырья включает корпус 1 печи в виде шахты с патрубком 3 для подачи хлормагниевого сырья и патрубком 4 для вывода готового продукта, стальные компенсаторы со слоем огнеупорной футеровки,...
Тип: Изобретение
Номер охранного документа: 0002503618
Дата охранного документа: 10.01.2014
20.09.2014
№216.012.f539

Способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана

Изобретение относится к способу переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана. Твердые медно-ванадивые отходы выщелачивают водой с получением медно-ванадиевой пульпы, в которую подают гипохлорит кальция или осветленную пульпу газоочистных сооружений титано-магниевого...
Тип: Изобретение
Номер охранного документа: 0002528610
Дата охранного документа: 20.09.2014
10.01.2015
№216.013.1d30

Способ очистки сточных вод титано-магниевого производства

Изобретение может быть использовано для очистки сточных вод титано-магниевого производства. Сточные воды смешивают и отделяют твердые взвеси в песколовке. Полученные стоки нейтрализуют в две стадии известковым молоком при концентрации оксида кальция в известковом молоке, равной не менее 100...
Тип: Изобретение
Номер охранного документа: 0002538900
Дата охранного документа: 10.01.2015
10.07.2015
№216.013.5cda

Способ нанесения покрытия на поверхность реторты, используемой для получения губчатого титана и установка для его осуществления

Изобретение относится к способу и устройству нанесения покрытия на поверхность реторты, используемой для получения губчатого титана. Осуществляют заливку в реторту электролита в виде смеси водного раствора хлористого железа и соляной кислоты. В электролит устанавливают растворимые электроды...
Тип: Изобретение
Номер охранного документа: 0002555311
Дата охранного документа: 10.07.2015
+ добавить свой РИД