×
19.04.2019
219.017.295c

Результат интеллектуальной деятельности: Аппарат для обработки газа

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Технический результат по обеспечению качественной обработки газа при длительной эксплуатации достигается тем, что аппарат для обработки газа содержит корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, при этом каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, причем у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, при этом наружная боковая поверхность корпуса покрыта витыми тонковолокнистыми пучками из базальтового материала, продольно вытянутыми снизу вверх. 5 ил.

Изобретение может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью.

Известен аппарат для обработки газа (см., патент РФ на полезную модель № 152749 МПК В01D 53/18, опубл. Бюл. № 17, 20.06.2015 г.), содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, при этом наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки.

Недостатком является высокая энергоемкость, определяемая наличием повышенного влагосодержания в обрабатываемом газе, когда каплеуловители, установленные на одном уровне с валом, непрерывно сбрасывают капли абсорбирующей жидкости на ее зеркало, расположенное на высоте корпуса, соответствующей 0,3-0,35 объема аппарата. В результате, под воздействием перемещающегося потока обрабатываемого газа наблюдается «витание» капелек абсорбирующей жидкости с резким возрастанием аэродинамического сопротивления корпуса и, соответственно, увеличением мощности на привод устройства подачи газа в аппарат.

Известен аппарат для обработки газа (см. патент РФ на изобретение №2627898, МПК В01Д 53/18, В01Д 45/08, опубл.14.08.2017.Бюл. №23), содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки слива в днище корпуса.

Недостатком является снижение качества очистки газа при длительной эксплуатации из-за тепловых потерь в окружающую среду через наружную поверхность корпуса аппарата, а это приводит к нарушению температурного режима процесса обработки газа повышенного влагосодержания, сопровождающегося выделением теплоты гидрации, растворения, разбавления и конденсации и, как следствие изменяет суммарный тепловой эффект сорбции.

Технической задачей промышленного изобретения является обеспечение заданного качества обработки газа при длительной эксплуатации путём поддержания нормированного температурного режима процесса сорбции путём устранения тепловых потерь через наружную поверхность корпуса аппарата вследствие покрытия её витыми пучками тонковолокнистого базальтового материала, продольно вытянутого снизу-вверх.

Технический результат по обеспечению качественной обработки газа при длительной эксплуатации достигается тем, что аппарат для обработки газа, содержит корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, при этом каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, причем у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, при этом наружная боковая поверхность корпуса покрыта витыми тонковолокнистыми пучками из базальтового материала, продольно вытянутыми снизу-вверх.

На фиг. 1 показан аппарат для обработки газа с покрытием наружной поверхности корпуса витыми тонковолокнистыми пучками из базальтового материала, на фиг. 2 – разрез А-А фиг. 1, на фиг. 3 – внутренняя поверхность суживающегося сопла с криволинейными канавками, на фиг.4 – каплеуловитель, выполненный в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, на фиг. 5 – фрагмент покрытия наружной поверхности корпуса витыми тонковолокнистыми пучками из базальтового материала.

Аппарат для обработки газа состоит из корпуса 1 со штуцером входа 2 и выхода 3 газа, входа 4 и выхода 5 абсорбирующей жидкости, внутри которого на валу 6 установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин 7, покрытых пористой пленкой 8, при этом металлические пластины 7 укреплены на валу 6 посредством ребер 9. В корпусе 1 установлены каплеуловители 10 на одном горизонтальном уровне с осью 11 вала 6. Штуцер входа 2 имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки 12. В корпусе 1 расположены застойные зоны 13.

Наружная поверхность 14 вала фиксирующего барабана, выполнена с покрытием из наноматериала 15 в виде стеклообразной пленки 16 (см., например, Киш. А. Кинетика электрохимического растворения металлов. М.: Мир, 1990. – 272 с.). Каплеуловители 10 выполнены в виде полусферы 16 со смещением центральной оси 17 в сторону внутренней боковой поверхности 18 корпуса 1, причем у основания 19 полусферы 16 расположен желобообразный сборник 20 каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом 21 ее слива в днище 22 корпуса 1.

Наружная боковая поверхность 23 корпуса 1 покрыта витыми тонковолокнистыми пучками 24 из базальтового материала, продольно вытянутые по корпусу 1 снизу-вверх.

Аппарат для обработки газа работает следующим образом.

Тепловые потери обусловлены процессом передачи тепловой энергии теплопроводностью через наружную боковую поверхность в окружающую среду нарушает тепловое соотношение внутри корпуса 1 между тепловой гидрации, растворения и конденсации (см., например, стр. 294 В.П Исаченко и др. Теплопередача – М.: Энергоиздат, 1981-416, с., ил. ) и температурный режим абсорбционной обработки газа не соответствует нормированным параметрам, что снижает качество готового продукта.

При покрытии наружной боковой поверхности 23 корпуса 1 базальтовым материалом не только устраняются потери теплоты в окружающую среду, в связи его теплозащитных свойств, но и при выполнении базальтового материала в виде витых тонковолокнистых пучков 24, продольно вытянутых снизу-вверх, наблюдается аккумулирование тепловой энергии, поступающей из внутреннего объема корпуса 1 (см. например, Волокнистые материалы из базальтов Украины, изд-во Киев-1971-78 с., ил.). В результате теплота, возникающая при теплотехнических процессах абсорбционной обработке газа не рассеивается в окружающую среду вследствие изменения температуры наружного воздуха, а возвращается после аккумулирования, в покрытые из тонковолокнистого базальтового материала в виде витых пучков 24, даже при нестационарном тепломассообмене (см. например, стр.271. П.В Цой. Методы расчета отдельных задач тепломассопереноса. М.: энергия. 1971-384с.,ил.), сопутствующего различным расходам, поступающего на обработку газа. При выходе металлических пластин 7 после восстановления пористой пленки 8 из абсорбирующей жидкости, зеркало которой находится ниже горизонтального уровня, соответствующего оси вала 6, капельки жидкости с каплеуловителя 10 под действием силы тяжести спадают вниз и захватываются движущимся потоком обрабатываемого газа. Следовательно, наблюдается витание мелкодисперсных каплеобразных частиц над зеркалом абсорбирующей жидкости, что увеличивает аэродинамическое сопротивление аппарата для обработки газа и, следовательно, мощность на привод устройства подачи газа в корпус 1 достигает 20-25% (см., например, Курчавин В.М., Мезенцев А.П. Экономия тепловой и электрической энергии в поршневых компрессорах.– Л.: Энергоатомиздат, 1985. – 81 с.: ил.).

Для устранения «витания» мелкодисперсных каплеобразных частиц абсорбирующей жидкости, хаотически сбрасываемых с каплеуловителя 10, он выполнен в виде полусферы 16. Тогда мелкодисперсные каплеобразные частицы под совместным действием сил сцепления и тяжести в результате смещения центральной оси 17 каплеуловителя 10 в сторону боковой поверхности 18 корпуса 1, перемещаются к основанию 19 в желобообразный сборник 20, где коагулируют, укрупняются и по вертикальному каналу 21 сливаются в днище 22 корпуса 1 аппарата для обработки газа.

В результате устраняется «витание» мелкодисперсных частиц над зеркалом абсорбирующей жидкости, то есть поддерживается нормированное аэродинамическое сопротивление корпуса 1 и, как следствие, заданная мощность на привод устройства по подаче газа на обработку.

Перенесение обрабатываемого газа повышенного влагосодержания в корпусе 1 сопровождается выделением теплоты гидрации, растворения, разбавления и конденсации, обусловливающим суммарный тепловой эффект сорбции(см., например, Коун А.А., Резенфанд Ф.С. очистка газа. М.: Химмаш, 1998. – 198 с.). Это приводит к интенсивному испарению абсорбционной жидкости, в результате чего осуществляется контакт с нижней стороны наружной поверхности 14 вала 6, находящейся по мере вращения фильтрующего барабана на пути перемещающегося насыщенного мелкодисперсной влагой испаряющегося потока. При этом налипающая на наружную поверхность 14 мелкодисперсная влага коагулирует, укрупняется и коррозирует металл вала 6.

Одновременно на выходе штуцера 2 входа газа в виде суживающегося сопла осуществляется внезапное расширение в корпусе 1 обрабатываемого газа повышенного влагосодержания со снижением температуры насыщения пара с последующей конденсацией монодисперсной влаги, налипающей на верхнюю сторону внешней поверхности 14 вала 6 (эффект Джоуля-Томсона, см., например, Нащокин В.В. Техническая термодинамика и теплопередача М.: Высш. школа. 1980. – 469 с.). В результате пузырьки пара, соприкасаясь с верхней стороной внешней поверхности 14 сжимаются до высоких давлений и быстро распадаются, приводя к разрушению металла вала 6, т.к. наблюдается явление локальной кавитации.

Совместное коррозионное и кавитационное воздействие на наружную поверхность 14 вала 6 приводит к разрушению его с последующим ремонтом или заменой и, соответственно, к внеплановым демонтажным работам, что, как следствие, способствует возрастанию энергозатрат на процесс очистки газа.

Для устранения разрушающего действия коррозии и кавитации на наружную поверхность 14 вала 6 наносится покрытие, выполненное из наноматериала 15 с образованием стеклоподобной пленки 16. В результате не осуществляется налипание как мелкодисперсных частиц абсорбционной жидкости с нижней стороны, так и конденсирующихся капелек пара с верхней стороны наружной поверхности 14 вала 6. Следовательно, практически отсутствуют коррозийные и кавитационные воздействия, и вал 6 с фильтрующим барабаном эксплуатируется в заданном временном режиме по условию нормативного ремонта или замены.

Обрабатываемый газ с нормативными параметрами по расходу подают в корпус 1 через штуцер входа 2 с криволинейными канавками 12. В результате перемещения потока обрабатываемого газа от входного отверстия штуцера входа 2, выполненного в форме суживающегося сопла, по продольно расположенным криволинейным канавкам 12, он закручивается и в виде вихревого потока (см., например, Меркулов А.П. Вихревой эффект и его использование в технике. Куйбышев, 1969. – 369 с.) поступает в полость очистки газа корпуса 1 аппарата. Наличие вихревого потока в полости корпуса 1 приводит к образованию в застойных зонах 13 микровихрей, в результате чего в застойных зонах 13 ламинарный режим движения газа в пограничном слое (место контакта внутренней поверхности корпуса 1 и обрабатываемого газа) переходит в турбулентный (см., например, А.Д. Альтшуль и др. Аэродинамика и гидравлика. М.: 1975. – 438 с.). В результате весь объем газа, поступающий в корпус 1, участвует в процессе абсорбционной обработки. Обрабатываемый газ по мере перемещения в корпусе 1 воздействует на металлические пластины 7, перпендикулярно расположенные к направлению движения обрабатываемого газа. Так как металлические пластины 7 укреплены на валу 6, то последние начинают вращаться на оси 11. По мере перемещения металлических пластин 7 из горизонтального положения в вертикальное изменяется площадь контакта абсорбирующей поверхности в виде смоченной абсорбирующей жидкостью пленки 8, и, следовательно, осуществляется переменный по времени процесс абсорбционного отделения от газа вредных загрязнений, определяемых абсорбирующей способностью жидкости, находящейся в полости корпуса 1.

Наибольшая интенсивность абсорбционной очистки газа происходит на пористой пленке 8, когда металлическая пластина 7 занимает верхнее вертикальное положение. По мере вращения вала 6 на оси 11 площадь контакта абсорбирующей поверхности пористой пленки 8 вновь уменьшается, и очищенный закрученный газ огибает металлическую пластину 7, в застойной зоне 13, находящейся перед штуцером выхода 3 полости корпуса 1, ламинарный режим в пограничном слое преобразуется в турбулентный, в результате чего весь объем газа, поступающий в корпус 1, участвует в процессе абсорбционной очистки.

Синусоидальный характер абсорбционной очистки газа от вредных частиц обеспечивает высокое качество очистки с минимизацией затрат абсорбирующей жидкости (см., например, Берман Л.Д. О теплообмене при пленочной конденсации движущегося пара//Теплообмен, температурный режим и гидродинамика при генерации пара.– Л.: Наука, 1981. – С. 93-102.).

Истощенная в результате контакта с обрабатываемым газом пористая пленка 8 по мере перемещения металлических пластин 7 погружается в абсорбирующую жидкость, где восстанавливается и, выходя из жидкости, зеркало которой находится ниже горизонтального уровня, соответствующего оси 11 вала 6 на величину, определяемую заполнением внутренней полости корпуса 1, после каплеуловителей 10 вновь переходит в рабочее состояние для последующего контактного взаимодействия с обрабатываемым потоком газа. Процесс обновления абсорбирующей жидкости в корпусе 1 осуществляется или постоянно, путем подачи жидкости через штуцер 5 выхода, или периодически по мере необходимости так же через штуцеры входа 4 и выхода 5 жидкости.

При незначительном увеличении расхода обрабатываемого газа, например, по производственной необходимости, но с соблюдением заданной степени абсорбционной обработки, осуществляется поворот металлических пластин 7 в ребрах 9 на угол от 15 до 25 (большему значению увеличения расхода соответствует большее значение угла поворота). В этом случае обрабатываемый газ входит через штуцер 2 и, проходя корпус 1, воздействует на абсорбирующую поверхность металлической пластины 7, частично сходя по ней под углом к плоскости вращения, т.е. усилие на металлическую пластину 7 с возрастанием расхода обрабатываемого газа практически не увеличивается, а время его контакта с абсорбирующей поверхностью пористой пленки 8 остается неизменным и, соответственно, качество очистки газа от загрязнений не ухудшается. Величина угла поворота металлических пластин 7 на ребрах 9 от 15° до 25° позволяет при увеличении расхода обрабатываемого газа до 20% поддерживать заданное качество очистки путем постоянной скорости вращения вала 6 (в пределах изменения расхода обрабатываемого газа от нормативного до увеличенного на 20%), т.е. достигается равенство нахождения по времени металлических пластин 7 с пористой пленкой 8 как в режиме контакта с обрабатываемым газом, так и с абсорбирующей жидкостью.

Заполнение корпуса 1 абсорбирующей жидкостью обусловлено необходимостью стекания с пористых пленок 8 абсорбирующей жидкости до перехода металлических пластин 7 в горизонтальное положение, и расположение каплеуловителей 10 на одном горизонтальном уровне с осью 11 вала 6 устраняет возможность захвата обрабатываемым потоком газа каплеобразующих частиц с зеркала абсорбирующей жидкости.

Оригинальность предполагаемого изобретения заключается в том, что заданное качество обработки газа при длительной эксплуатации обеспечивается за счёт нормированного температурного режима процесса абсорбции при изменяющихся температурах наружного воздуха вокруг корпуса, путем устранения тепловых потерь из его внутреннего объема, в следствии покрытия наружной боковой поверхности аппарата тонковолокнистым базальтовым материалом, выполненным в виде витых пучков продольно вытянутых сверху-вниз, что не только осуществляет теплозащиту, но и уккумулирует тепловую энергию с поступающим возвратом её во внутренний объем аппарата.

Аппарат для обработки газа, содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, при этом каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, причем у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, отличающийся тем, что наружная боковая поверхность корпуса покрыта витыми тонковолокнистыми пучками из базальтового материала, продольно вытянутыми снизу вверх.
Аппарат для обработки газа
Аппарат для обработки газа
Источник поступления информации: Роспатент

Показаны записи 121-130 из 320.
17.02.2018
№218.016.2b4f

Система оборотного водоснабжения

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий. Система оборотного водоснабжения содержит теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой...
Тип: Изобретение
Номер охранного документа: 0002643407
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2b99

Ротационная пульполовушка для очистки диффузионного сока

Изобретение относится к сахарной промышленности, а именно к очистке диффузионного сока от мезги. Ротационная пульполовушка для очистки диффузионного сока, в состав которой входит корытообразный корпус с патрубком для подвода нефильтрованного диффузионного сока и бункер для мезги. Наружная...
Тип: Изобретение
Номер охранного документа: 0002643266
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2c6e

Экструдер пресса для изготовления макаронных изделий улучшенного качества

Изобретение относится к пищевой промышленности и предназначено для применения в прессах для изготовления макаронных изделий. Экструдер содержит в корпусе шнек с выходным валом привода экструдера с одной стороны и с формующим устройством с другой стороны. Винтовая поверхность шнека разделена на...
Тип: Изобретение
Номер охранного документа: 0002643261
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.2ffe

Котел отопительный газовый

Изобретение относится к бытовой топливоиспользующей аппаратуре. Котел отопительный газовый состоит из прямоугольного шкафа с тепловой защитой и кожухом, внутри которого расположены топка с горелкой, теплообменник и патрубок выхода продуктов сгорания через внешнюю стенку помещения, установленный...
Тип: Изобретение
Номер охранного документа: 0002645108
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.351b

Термоэлектрическое зарядное устройство для гаджетов

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую, а именно для подзарядки различных гаджетов и других устройств при отсутствии источников электроснабжения. Сущность завяленного решения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002645872
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f7

Экологичное дорожное ограждение

Изобретение относится к ограждениям автомобильных дорог и городских улиц и может использоваться в качестве барьерных ограждений, служащих для повышения безопасности при движении автомобильного транспорта, очистки уличного воздуха от вредных компонентов выхлопных газов. Экологичное дорожное...
Тип: Изобретение
Номер охранного документа: 0002646293
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.3b42

Способ защиты от средств фиксации теплового излучения и устройство защиты от средств фиксации теплового излучения

Группа изобретений относится к военной технике, а именно к средствам защиты от фиксации теплового излучения сторонними наблюдателями. Способ защиты от средств фиксации теплового излучения включает выполнение закрывающего источник тепла экрана с осуществлением поэтапного поглощения выделяемого...
Тип: Изобретение
Номер охранного документа: 0002647346
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3d76

Способ прогнозирования степени тяжести ишемического процесса сердца, головного мозга и нижних конечностей

Изобретение относится к области медицины и может быть использовано для диагностики и терапии в неврологии, кардиологии, сосудистой хирургии, экспертизе инвалидности, профессиональной пригодности. Способ заключается в определении таких информативных признаков S как критерий оценки центральной...
Тип: Изобретение
Номер охранного документа: 0002648178
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.3df5

Способ изготовления отрицательного электрода поверхностного типа для свинцово-кислотного аккумулятора

Изобретение относится к химическим источникам тока и может быть использовано при производстве свинцово-кислотных аккумуляторов различного назначения. При изготовлении отрицательных электродов используются отформированные положительные поверхностные электроды, изготовленные электрохимическим...
Тип: Изобретение
Номер охранного документа: 0002648246
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.45db

Энергосберегающая система подготовки приточного воздуха

Изобретение относится к строительству и может быть использовано для предварительного подогрева и охлаждения приточного воздуха в системах вентиляции и кондиционирования в зимний и летний периоды. Энергосберегающая система подготовки приточного воздуха, содержащая вентиляционную камеру, в...
Тип: Изобретение
Номер охранного документа: 0002650284
Дата охранного документа: 11.04.2018
Показаны записи 121-130 из 169.
19.10.2018
№218.016.9385

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Трехслойная ресурсосберегающая железобетонная панель включает теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде...
Тип: Изобретение
Номер охранного документа: 0002669897
Дата охранного документа: 16.10.2018
03.11.2018
№218.016.99f9

Продувочная свеча

Изобретение относится к газовой промышленности и предназначено для продувки газопроводов. Технической задачей предлагаемого изобретения является снижение шумового воздействия на окружающую среду при продувке газопроводов посредством продувочной свечи за счет выполнения кривизны криволинейных...
Тип: Изобретение
Номер охранного документа: 0002671541
Дата охранного документа: 01.11.2018
14.11.2018
№218.016.9d40

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных отраслях техники, в частности в регенеративных теплообменниках газотурбинных установок реакторостроения. В вихревом теплообменном элементе, содержащем соосно расположенные одна в другой...
Тип: Изобретение
Номер охранного документа: 0002672229
Дата охранного документа: 12.11.2018
21.11.2018
№218.016.9ec8

Звукоизолирующее окно

Изобретение относится к строительству, а именно к конструкции звукоизолирующего окна, используемого в различных зданиях и сооружениях. Технический результат по обеспечению комфортных условий внутри здания или сооружения с сохранением звукоизолирующих параметров окна достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002672735
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f07

Устройство для гранулирования удобрений

Изобретение относится к устройству для гранулирования удобрений и может быть использовано в сельскохозяйственной промышленности. Устройство содержит цилиндрическую емкость со штуцерами вывода готового продукта и подвода теплоносителя через форсунки. Емкость разделена на загрузочную камеру со...
Тип: Изобретение
Номер охранного документа: 0002672755
Дата охранного документа: 19.11.2018
30.11.2018
№218.016.a1c7

Энергосберегающий пластинчатый теплообменник

Изобретение относится к теплотехнике, а именно к теплообменному оборудованию, и может быть использовано при воздушном охлаждении газов и жидкостей вне помещений без принудительной подачи охлаждающего воздуха. В пластинчатом теплообменнике содержится горизонтальный корытообразный кожух, днище и...
Тип: Изобретение
Номер охранного документа: 0002673631
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a1eb

Адсорбер

Изобретение относится к технике очистки газов адсорбентами, а именно к газоочистному оборудованию, и может найти применение в химической, металлургической и других отраслях промышленности. Адсорбер включает вертикальный корпус, разделенный перфорированными зигзагообразными перегородками на...
Тип: Изобретение
Номер охранного документа: 0002673512
Дата охранного документа: 27.11.2018
06.12.2018
№218.016.a43f

Устройство для термической обработки осадка сточных вод предприятий аграрно-промышленного комплекса

Изобретение предназначено для обезвоживания осадков, активного ила или отстоя промышленных и бытовых сточных вод и может быть использовано в водоснабжении и канализации. Устройство для термической обработки осадка сточных вод предприятий аграрно–промышленного комплекса включает осушительную...
Тип: Изобретение
Номер охранного документа: 0002674125
Дата охранного документа: 04.12.2018
13.01.2019
№219.016.aef6

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично...
Тип: Изобретение
Номер охранного документа: 0002676827
Дата охранного документа: 11.01.2019
02.02.2019
№219.016.b690

Устройство для проветривания глубоких карьеров

Изобретение относится к горнодобывающей промышленности, в частности к устройству для проветривания глубоких карьеров. Технический результат заключается в поддержании нормированной энергоемкости процесса проветривания, устранении дополнительных потерь тепла. Устройство карьеров включает...
Тип: Изобретение
Номер охранного документа: 0002678737
Дата охранного документа: 31.01.2019
+ добавить свой РИД