×
19.04.2019
219.017.1cb9

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИРОВАНИЯ СВАРНЫХ СОЕДИНЕНИЙ, НАПЛАВОК И ТЕЛА ТРУБЫ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ БОЛЬШОГО ДИАМЕТРА РАДИОГРАФИЧЕСКИМ МЕТОДОМ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПОД ДАВЛЕНИЕМ, БЕЗ ПРЕКРАЩЕНИЯ ТРАНСПОРТА ГАЗА

Вид РИД

Изобретение

№ охранного документа
0002685052
Дата охранного документа
16.04.2019
Аннотация: Использование: для диагностирования сварных соединений, наплавок и основного тела трубы магистральных газопроводов. Сущность изобретения заключается в том, что проведение радиографического контроля происходит под давлением перекачиваемой среды (без прекращения транспорта природного газа) с использованием совокупности следующих материалов и оборудования: радиографической кассеты длиной не более 300 мм, состоящей из внешнего светонепроницаемого чехла и внутреннего светонепроницаемого чехла, оснащенного усиливающими экранами (металло-флюоресцентные, синеизлучающие, с коэффициентом сокращения экспозиции 70÷150 раз) и рентгеновской пленкой (сенсибилизированная со средним градиентом 3,3; чувствительность (p-1) 800-1200; класс по EN 584-10), уложенной между усиливающими экранами, рентгеновский аппарат постоянного потенциала, с возможностью регулировки анодного напряжения от 250 до 300 кВ, а проявка полученных радиографических снимков осуществляется при температуре t≈5÷7°С. Технический результат: расширении арсенала способов определения технического состояния сварных соединений, наплавок и тела трубы радиационным методом контроля под давлением и без остановки транспорта газа, с сохранением необходимого качества и достоверности результатов контроля. 3 ил.

Изобретение относится к области оценки технического состояния сварных соединений, наплавок и тела газопроводных труб большого сортамента с большой толщиной стенки радиографическим методом неразрушающего контроля без прекращения транспорта природного.

Известны способы оценки технического состояния сварных соединений и тела трубы радиографическим методом неразрушающего контроля [1, 2, 3], заключающиеся в регистрации и анализе ионизирующего излучения на радиографической пленке после взаимодействия с контролируемым объектом.

Недостатком данных способов является невозможность проведения радиографического контроля сварных соединений и тела трубы газопровода, транспортирующего газ под давлением вследствие возникновения геометрической нерезкости (расплывчатости) радиографических снимков из-за движения потока природного газа в полости газопровода, содержащего в себе молекулы воды, серы и других элементов, а также механических примесей [4, 5], расфокусировывающих потоки рентгеновского излучения.

Расфокусировка потоков рентгеновского излучения приводит к получению радиографических снимков, не подлежащих расшифровке, а следовательно в общем, к невозможности проведения радиографического контроля.

Задачей изобретения является создание способа диагностирования радиографическим методом контроля сварных соединений и основного тела газопроводных труб большого диаметра с большой толщиной стенки без прекращения транспорта природного газа.

Технический результат заключается в обеспечении качества радиографических снимков.

Поставленная задача и технический результат соответственно достигаются путем совместного использования определенного вида оборудования и материалов, в совокупности сокращающих время экспозиции при проведении радиографических работ, а также выбором определенной схемы радиографического просвечивания в совокупности с методом проявки радиографических снимков.

На фиг. 1 показана схема установки оборудования и радиографических материалов, а также пример разметки контролируемых участков для радиографического просвета толстостенного газопровода большого диаметра под давлением транспортируемого газа.

Выполнение работ по радиографическому контролю сварных соединений и основного тела газопроводных труб большого диаметра с большой толщиной стенки при непрекращающемся транспорте природного газа осуществляется следующим образом.

В начале определяется схема радиографического просвечивания: обязательно фронтальное просвечивание через две стенки контролируемой трубы.

Поверхность контролируемого сварного соединения или поверхность тела основной трубы 1, находящейся под транспортом природного газа разбивается на участки контроля 2 длиной не более 300 мм.

Ограничение длины контролируемого участка (300 мм) связано с геометрическим изменением радиационной толщины объекта контроля и фокусного расстояния, обусловленных кривизной поверхности контролируемой трубы относительно фокусного пятна (точки выхода рентгеновского луча) рентгеновского аппарата.

Далее, на один из размеченных участков укладывается радиографическая кассета 3 длиной не более 300 мм, состоящая из внешнего светонепроницаемого чехла и внутреннего светонепроницаемого чехла, который оснащен усиливающими экранами (металло-флюоресцентные, синеизлучающие, с коэффициентом сокращения экспозиции 70÷150 раз) и промышленной рентгеновской пленкой (сенсибилизированная со средним градиентом 3,3; чувствительность (p-1) 800-1200; класс по EN 584 - 10), уложенной между усиливающими экранами.

На диаметрально противоположной стороне участка сварного соединения или основного тела трубы с установленной радиографической кассетой устанавливается рентгеновский аппарат 4 постоянного потенциала, с возможностью регулировки анодного напряжения от 250 до 300 кВ.

Предварительно, до начала работ определяют фактор экспозиции при помощи специальной номограммы [6], позволяющей по исходным данным (диаметр, толщина стенки трубы, фокусное расстояние, характеристики рентгеновского аппарата) определять ориентировочное время экспозиции (процесс, при котором ионизирующее излучение регистрируется на радиографической пленке).

Затем, осуществляется подбор режима радиографического просвечивания (значения анодного напряжения и время экспозиции) методом пробных экспозиций в зависимости от толщины контролируемой стенки.

Для этого производится пробная экспозиция при максимальном значении анодного напряжения рентгеновского аппарата в течение 1 минуты.

После проведения пробной экспозиции, радиографическая пленка извлекается из внешнего и внутреннего светонепроницаемого чехла в затемненном помещении, где проводится фотообработка при неактиничном освещении.

Фотообработка радиографических снимков, экспонируемых с применением рентгеновского аппарата постоянного действия, промышленной радиографической пленки и усиливающих радиографических экранов с указанными характеристиками производится под постоянным контролем вручную, с применением фотокюветов. Для увеличения времени проявки и для минимизирования эффекта «перепроявки» радиографических снимков, полученных данным способом, раствор проявителя должен быть холодным (t ≈ 5÷7°С).

По результатам проявки радиографической пленки производится корректировка значений анодного напряжения рентгеновского аппарата и времени экспозиции с целью получения надлежащего качества радиографического изображения за максимально короткое время просвета.

Сочетание приборов и материалов, при котором используется мощный рентгеновский аппарат постоянного действия, промышленная радиографическая пленка и усиливающие радиографические экраны с указанными характеристиками, существенно снижает время экспозиции, а следовательно, снижает уровень шумов и минимизирует возможность возникновения геометрической нерезкости (расплывчатости) радиографических снимков.

После окончания подбора режима радиографического просвечивания производиться последовательная диагностика всех размеченных участков.

На фиг. 2, фиг. 3 представлен пример радиографического изображения одного и того же участка сварного соединения, полученного при радиографическом контроле газопровода транспортирующего природный газ по стандартному способу (фиг. 1) (отсутствие чувствительности, геометрическая нерезкость, малая контрастность и расплывчатость изображения не позволяет определить вид дефектов и их размеры) и по предлагаемому способу (фиг. 2) (геометрическая нерезкость и расплывчатость изображения практически отсутствуют, что позволяет определить вид дефектов и их размеры).

Предлагаемый способ радиографического неразрушающего контроля под давлением (без прекращения транспорта газа) опробован на газопроводах с различной толщиной стенкой и различной величиной давления перекачиваемой среды (таблица 1) и показал положительный эффект.

Таблица 1 - Объекты апробации способа проведения диагностики толстостенных сварных соединений труб большого диаметра под давлением.

Диаметр, толщина стенки, мм Давление газа (Р, МПа); скорость потока газа (U газа, м/с) Анодное напряжение (кВ)/ Анодный ток (мА)
1420×23,0 Р газа ≈ 6,9 МПа
U газа ≈ 8,2 м/с
300/3
1420×27,0 Р газа ≈ 8,1 МПа
U газа ≈ 7,9 м/с
300/3
1420×21,6 Р газа ≈ 8,4 МПа
U газа ≈ 6,3 м/с
300/3
1420×25,8 Р ≈ 7,0 МПа
U газа ≈ 7,2 м/с
300/3
1420×25,8 Р газа ≈ 7,0 МПа
U газа ≈ 7,8 м/с
300/3
1420×25,8 Р газа ≈ 7,0 МПа
U газа ≈ 7,8 м/с
300/3
1420×21,6 Р газа ≈ 8,46 МПа
U газа ≈ 26,9 м/с
300/3

Время каждой экспозиции с учетом толщины стенки газопровода фронтальным методом просвечивания при применении указанных выше условиях – не более 2,0 мин., при качестве радиографических снимков, соответствующих требованиям [2].

Эффект изобретения проявляется в том, что данный метод позволяет расширить возможность применения рентгеновской дефектоскопии сварных соединений, наплавок и тела трубы в дополнение к применяемым в настоящее время методам (ультразвуковой, магнитопорошковый, капиллярный и т.д.) под давлением, без прекращения транспорта газа. Применение рентгеновских аппаратов, радиографических пленок, усиливающих экранов с указанными характеристиками, а также указанного метода проявки позволяет сократить общее время простоя магистральных трубопроводов при проведении диагностических работ, а также позволяет в дополнение к существующим методам контроля, наиболее точно определить состояние диагностируемых объектов.

Список использованных источников

1. Справочник: В 7 т. Под редакцией чл.-корр. РАН В.В. Клюева Т. 1: В 2 кн.: Кн. 1: Визуальный и измерительный контроль. Кн. 2: Радиационный контроль. - М.: Машиностроение, 2003. - 560 с.: ил. – С. 422-440.

2. ГОСТ 7512-82*. Контроль неразрушающий. Сварные соединения. Радиографический метод.

3. Учебно-методическое пособие/ Под. ред. к. т.н. В.И. Горбачева. - М.: Издательство «Спутник+», 2009. - 458 с.

4. ГОСТ 5542-2014. Газы горючие природные для промышленного и коммунально-бытового назначения.

5. СТО Газпром 089-2010. Газ горючий природный, поставляемый и транспортируемый по магистральным газопроводам. Технические условия. - М.: ОАО «Газпром», 2010. - 15 с.

6. СТО Газпром 2-2.4-083-2006. Инструкция по неразрушающим методам контроля качества сварных соединений при строительстве и ремонте промысловых и магистральных газопроводов М.: ОАО «Газпром», 2006. - 105 с.

Способ диагностирования сварных соединений, наплавок и основного тела трубы магистральных газопроводов радиографическим методом, отличающийся тем, что проведение радиографического контроля происходит под давлением перекачиваемой среды (без прекращения транспорта природного газа) с использованием совокупности следующих материалов и оборудования: радиографической кассеты длиной не более 300 мм, состоящая из внешнего светонепроницаемого чехла и внутреннего светонепроницаемого чехла, оснащенного усиливающими экранами (металло-флюоресцентные, синеизлучающие, с коэффициентом сокращения экспозиции 70÷150 раз) и рентгеновской пленкой (сенсибилизированная со средним градиентом 3,3; чувствительность (p-1) 800-1200; класс по EN 584-10), уложенной между усиливающими экранами, рентгеновский аппарат постоянного потенциала, с возможностью регулировки анодного напряжения от 250 до 300 кВ, а проявка полученных радиографических снимков осуществляется при температуре t≈5÷7°С.
СПОСОБ ДИАГНОСТИРОВАНИЯ СВАРНЫХ СОЕДИНЕНИЙ, НАПЛАВОК И ТЕЛА ТРУБЫ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ БОЛЬШОГО ДИАМЕТРА РАДИОГРАФИЧЕСКИМ МЕТОДОМ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПОД ДАВЛЕНИЕМ, БЕЗ ПРЕКРАЩЕНИЯ ТРАНСПОРТА ГАЗА
СПОСОБ ДИАГНОСТИРОВАНИЯ СВАРНЫХ СОЕДИНЕНИЙ, НАПЛАВОК И ТЕЛА ТРУБЫ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ БОЛЬШОГО ДИАМЕТРА РАДИОГРАФИЧЕСКИМ МЕТОДОМ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПОД ДАВЛЕНИЕМ, БЕЗ ПРЕКРАЩЕНИЯ ТРАНСПОРТА ГАЗА
СПОСОБ ДИАГНОСТИРОВАНИЯ СВАРНЫХ СОЕДИНЕНИЙ, НАПЛАВОК И ТЕЛА ТРУБЫ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ БОЛЬШОГО ДИАМЕТРА РАДИОГРАФИЧЕСКИМ МЕТОДОМ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПОД ДАВЛЕНИЕМ, БЕЗ ПРЕКРАЩЕНИЯ ТРАНСПОРТА ГАЗА
Источник поступления информации: Роспатент

Показаны записи 21-26 из 26.
02.10.2019
№219.017.d04e

Способ подъёма проводов на траверсу линий электропередач и устройство для его осуществления

Изобретение относится к устройствам, используемым в электроэнергетике. Устройство для подъема проводов на траверсу линий электропередач представляет собой конструкцию, состоящую из рамы, в нижней части которой установлен шток с пружиной, который обеспечивает автоматическую фиксацию рамы на...
Тип: Изобретение
Номер охранного документа: 0002700271
Дата охранного документа: 16.09.2019
01.12.2019
№219.017.e96b

Способ определения быстродействия систем автоматического управления

Изобретение относится к области автоматизированных систем управления технологическими процессами (АСУ ТП), в частности для диагностики систем автоматического управления (САУ). Задачей полезной модели является повышение надежности работы систем автоматического управления. Поставленная задача...
Тип: Изобретение
Номер охранного документа: 0002707579
Дата охранного документа: 28.11.2019
27.06.2020
№220.018.2bb0

Защитное композиционное покрытие с повышенной коррозионной стойкостью и устойчивостью к обледенению

Изобретение относится к защитным композиционным покрытиям с повышенной коррозионной стойкостью и устойчивостью к обледенению и может быть использовано для обеспечения надежной работы и гарантированного ресурса металлоконструкций, эксплуатируемых в условиях атмосферного и водного коррозионного...
Тип: Изобретение
Номер охранного документа: 0002724746
Дата охранного документа: 25.06.2020
04.07.2020
№220.018.2f32

Интеллектуальная система помощи принятия диспетчерских решений для точного определения участка и места разрыва магистрального газопровода в режиме реального времени

Изобретение относится к области автоматизированных систем управления технологическими процессами и используется для мониторинга и диагностики линейных участков между крановыми площадками магистрального газопровода при аварийных ситуациях, связанных с его разрывом. Одной из основных аварийных...
Тип: Изобретение
Номер охранного документа: 0002725342
Дата охранного документа: 02.07.2020
12.04.2023
№223.018.448c

Способ определения коррозионной активности гликолей в теплообменном оборудовании

Изобретение относится к области исследований коррозионных процессов и может быть использовано при определении скорости коррозии стали и коррозионной активности гликолей в теплообменном оборудовании. Способ определения коррозионной активности гликолей в теплообменном оборудовании включает...
Тип: Изобретение
Номер охранного документа: 0002777000
Дата охранного документа: 29.07.2022
12.04.2023
№223.018.44a2

Способ редуцирования природного газа

Изобретение относится к области газораспределения, в частности снижения давления природного газа с использованием редуцирующего устройства, и может быть использовано на газораспределительных станциях магистральных газопроводов. Техническим результатом изобретения является уменьшение перепада...
Тип: Изобретение
Номер охранного документа: 0002770349
Дата охранного документа: 15.04.2022
Показаны записи 1-3 из 3.
20.03.2016
№216.014.ca6b

Способ предупреждения нагрева элементов трубной обвязки кранового узла при заполнении участков газопроводов

Изобретение относится к области эксплуатации газопроводов и может найти применение в газовой промышленности при заполнении участков трубопровода газом, например, при введении их в эксплуатацию после строительства или ремонта. Способ предупреждения нагрева элементов трубной обвязки кранового...
Тип: Изобретение
Номер охранного документа: 0002577896
Дата охранного документа: 20.03.2016
13.02.2018
№218.016.2241

Способ идентификации источника блуждающего тока

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной блуждающими токами. Способ идентификации источника блуждающего тока заключается в следующем: отключают средства электрохимической защиты трубопровода и синхронно измеряют разности потенциалов...
Тип: Изобретение
Номер охранного документа: 0002642137
Дата охранного документа: 24.01.2018
16.01.2019
№219.016.b046

Передвижной комплекс для газопламенной обработки металла

Изобретение относится к газопламенной обработке металлов при строительстве и ремонте промысловых и магистральных газопроводов. Передвижной комплекс для газопламенной обработки металла содержит автомобильный прицеп, на платформе которого установлены газовые баллоны высокого давления и...
Тип: Изобретение
Номер охранного документа: 0002677039
Дата охранного документа: 15.01.2019
+ добавить свой РИД