×
10.04.2019
219.017.072a

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА МЕТАЛЛОВ С КЕРАМИЧЕСКИМ АНОДОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере с анодом, состоящим из оксидного проводящего керамического материала на основе диоксида олова, имеющего структуру типа рутила. Электролиз ведут с использованием анода, в состав которого введены совместно модифицирующие добавки, способные образовывать твердые растворы замещения с трехвалентными катионами А и пятивалентными катионами В в структуре рутила, при этом общее количество добавляемых соединений не превышает 30 мас.%, а процесс электролиза осуществляют при температуре менее 950°С. Модифицирующие добавки для введения в состав анода трехвалентных катионов А содержат соединения Fe, Al, Мn, Cr, In, а для введения пятивалентных катионов В - соединения Sb, Nb, Та. Анод также содержит металлическую компоненту, не взаимодействующую с оксидным материалом при температуре синтеза и эксплуатации, в количестве не более 40 мас%. В качестве металлической компоненты используют Сu, Ni, благородные металлы Ag, Au, Pt, Pd и их сплавы. Обеспечивается снижение скорости коррозии анодов и загрязнения получаемого металла. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического получения алюминия в криолит-глиноземных расплавах.

В последние десятилетия интенсивно ведутся работы по созданию малорасходуемых («несгораемых», или «инертных») анодов для замены расходуемых углеродистых анодов при электролитическом получении алюминия. В результате замены ожидаются снижение затрат на производство алюминия, большая компактность конструкции технологического аппарата (электролизера) с меньшими тепловыми потерями, экологически более чистое производство. Описано много оксидных материалов и материалов на оксидной основе в связи с возможностью изготовления из них малорасходуемых анодов [1]. Диоксид олова имеет структуру рутила и обладает очень низкой растворимостью в криолит-глиноземных расплавах в отсутствие восстановителей, поэтому в качестве инертных анодов для получения алюминия электролизом был предложен одним из первых [2, 3].

Чистый диоксид олова обладает низкой электрической проводимостью и плохой спекаемостью, что не позволяет получить керамический материал с высокой электропроводностью и низкой пористостью. Поэтому в состав керамики было предложено вводить различные модифицирующие добавки, улучшающие либо спекаемость, либо электропроводность материала. В качестве таких добавок с содержанием до 20 мас.% (обычно 1-3 мас.%) рассматривались оксиды Fe, Sb, Сu, Mn, Nb, Zn, Cr, Co, W, Cd, Zr, Та, In, Ni, Ca, Ba, V, Bi, Ti, Hf, Mg, Sr, Al, Ga, Si, Ge, As [3-6]. Как правило, выбор оптимального состава керамики осуществляли по двум ключевым признакам: высокая плотность/низкая пористость получающейся керамики (хорошая спекаемость) и высокая электропроводность материала. По этим признакам оптимальной считается керамика, содержащая 1-3 мас.% СuО и Sb2O3 в качестве добавок, повышающих спекаемость и электропроводность материала, соответственно. Поэтому именно такие составы подробно изучались и предлагались для внедрения в производство [1, 4, 6, 8, 9]. Керамики такого состава являются аналогами материалов настоящего изобретения.

Так как олово практически нерастворимо в металлическом алюминии, и его сегрегация на межзеренных границах при застывании металла приводит к резкому ухудшению механических свойств металла, технологические ограничения на допустимый уровень содержания олова очень жесткие. В марках первичного алюминия предельная концентрация примеси олова в ГОСТ 11069-2001 специально не указана, т.е. она определяется исходя из ограничения на содержание «остальных элементов» (не более 0,02-0,03% для алюминия технической чистоты).

Для уменьшения скорости коррозии анодов на основе диоксида олова было предложено использовать анод с экранированной трехфазной границей [6], а также анод с защитным плохопроводящим покрытием, улучшающим токораспределение [9]. Одним из перспективных путей повышения коррозионной стойкости материалов инертного анода на основе диоксида олова является синтез сложных соединений со структурой рутила. В [10] было предложено использовать в качестве таких соединений сложные оксиды с общей формулой Ax3+Bx5+Sn2-2xO4 (А=Cr, Fe, Al, В=Sb, Nb, V), обладающие повышенной устойчивостью в криолит-глиноземном расплаве. Однако ни одно из предложенных решений не позволяет получать алюминий с содержанием олова менее 0,02-0,03% в расплавах и при температурах, традиционно используемых в промышленном производстве алюминия электролизом (криолитовое отношение КО=2.2-3.0, t=950-1000°С). Здесь криолитовое отношение КO=[NаF]/[АlF3] представляет собой отношение молярных концентраций фторида натрия и фторида алюминия в расплаве. Условно такие расплавы называют высотемпературными.

В последние годы активно исследуется возможность значительного снижения температуры электролиза путем применения средне- и низкотемпературных фторидных расплавов с пониженным КО и температурой плавления, что обеспечивает проведение процесса электролиза при температурах менее 950°С [1, 11]. Это должно позволить значительно снизить скорость коррозии материала анода в результате уменьшения растворимости диоксида олова при снижении КО расплава и температуры электролиза [12]. Однако при снижении КО и рабочей температуры расплава наблюдалось резкое ускорение коррозии анода [12, 13].

Прототипом настоящего изобретения является патент [3], в котором описан способ электролитического производства алюминия из глиноземсодержащего фторидного расплава, в условиях, когда часть анода, находящаяся в контакте с расплавом, состоит из оксидного проводящего керамического материала, химически стойкого к фторидному расплаву. Оксидный проводящий керамический материал по прототипу содержит по меньшей мере 80% SnO2, один или более оксидов из Fе2О3, ZnO, Сr2О3, Sb2О3, Вi2O3 и один или более оксидов из Та2О5, Nb2О5 и WO3. Указано, что один из подходящих составов керамических материалов включает 98%SnO2, 1,5%Sb2O3, 0,3%Fе2О3 и 0,2%ZnO. Для изготовления анода керамические материалы указанных составов спекаются при температурах 1000-1450°С.

Основным недостатком прототипа является хотя и низкий, но значительно превышающий предельно допустимый уровень загрязнения алюминия оловом, что обусловлено значимой растворимостью диоксида олова в высокотемпературных фторидных расплавах. С другой стороны, экспериментальная проверка показала, что на анодах, составы которых соответствуют аналогам и прототипу, при снижении температуры расплава происходит резкое ускорение деградационных процессов (селективное растворение модифицирующих добавок, пропитка расплавом, рекристаллизация и переосаждение SnO2, увеличение пористости), сопровождающееся резким ростом напряжения на электролизере, появлением предельного тока и механическим разрушением керамического материала. Последнее ограничивает возможности по снижению скорости коррозии инертных анодов на основе диоксида олова.

Задачей настоящего изобретения является снижение скорости коррозии инертных анодов на основе диоксида олова и загрязнения получаемого металла компонентами анода.

Решение поставленной задачи достигается тем, что в состав керамического материала на основе диоксида олова, структурного типа рутила, вводится трехвалентный катион А3+ (или несколько трехвалентных катионов), способный образовывать твердые растворы замещения в структуре рутила. Для стабилизации образующегося твердого раствора замещения и повышения растворимости в решетке катиона А3+ и общей электропроводности керамического анода в его состав вводят одновременно пятивалентный катион В5+, также способный образовывать твердые растворы замещения в структуре рутила, для чего к диоксиду олова добавляют соответственно соединения А и соединения В, общее количество которых не превышает 30% мас. Процесс электролитического получения металлов с анодами из такого керамического материала проводится в глиноземсодержащих средне- и низкотемпературных фторидных расплавах при температурах электролиза менее 950°С.

Вариант изобретения дополняют частные отличительные признаки, способствующие решению поставленной задачи.

С целью введения в состав керамического материала катиона А3+ при изготовлении анодов к диоксиду олова добавляются модифицирующие добавки - оксиды или другие соединения А, например соединения Fe, Al, Mn, Cr, In, а с целью введения катиона В5+ - соединения В, например соединения Sb, Nb, Та.

С целью увеличения электропроводности керамического материала в состав анода может добавляться металлическая компонента, не взаимодействующая с оксидным материалом при температурах синтеза и эксплуатации, в количестве не более 40 мас%. В качестве металлической компоненты используются Сu, Ni, благородные металлы Ag, Au, Pt, Pd и их сплавы.

Достигаемый при использовании изобретения технический результат обеспечивается благодаря повышенной стойкости к деградации указанных анодов в процессе электролиза глиноземсодержащих средне- и низкотемпературных фторидных расплавов при температуре менее 950°С, что обеспечивает снижение скорости коррозии инертного анода и загрязнения получаемого алюминия компонентами анода.

Для экспериментальной проверки заявляемых материалов были подготовлены образцы анодов различного состава (см. в таблице) и проведено испытание их деградационной устойчивости в условиях анодной поляризации в криолит-глиноземных расплавах различного состава. Образцы керамических материалов на основе диоксида олова различного состава изготавливались методом твердофазного керамического синтеза, включающего совместный помол компонентов в планетарной мельнице, прессование с использованием временной технологической связки (поливинилацетат) и спекание при 1280-1300°С в течение 10 часов. Для проведения электрохимических деградационных испытаний аноды из керамики изготавливались в виде брусков 15×15×100 мм. В качестве катодов использовались бруски 15×15×100 мм композитного материала на основе диборида титана, либо углеродные бруски с покрытием из диборида титана. Керамический анод закреплялся на медной шпильке, выполняющей роль токоподвода, и область контакта изолировалась от воздействия паров расплава корундовым цементом. Глубина погружения электродов в расплав, как правило, составляла 60-70 мм (рабочая площадь анода - около 40 см2). Испытания проводились при рабочем токе 20 А (плотность анодного тока 0.5 А/см2). Электролиз проводили в графитовом тигле, содержащем 2.1 кг расплава, насыщенного по глинозему. Расплав готовился из смеси реагентов Nа3АlF6, АlF3, Аl2О3 квалификации не ниже «ч». В ходе электролиза проводилась периодическая загрузка в расплав глинозема с интервалом 5-30 мин. Продолжительность испытаний составляла не менее 10 часов. Содержание олова в алюминии, полученном в ходе электролиза, определялось с использованием атомно-адсорбционного метода анализа после растворения пробы металла в соляной кислоте. Удельное электрическое сопротивление керамики при различных температурах измерялось четырехточечным методом с использованием платинового датчика.

В таблицу внесены результаты тестирования в криолит-глиноземных расплавах различных синтезированных материалов, как аналогов (№1-3) и прототипа (№4), так и новых материалов (№5-12). Все материалы испытывались в одинаковых условиях и имели незначительно отличающуюся пористость, что делает корректным их сопоставление на основании, в частности, содержания примеси олова в металлическом алюминии, полученном в ходе электролиза.

Из данных таблицы следует, что аналоги и прототип предложенного материала претерпевают полное разрушение при снижении температуры электролиза, что сопровождается существенным увеличением загрязнения алюминия оловом.

Одновременное введение в состав диоксида олова трех- и пятивалентных катионов А3+ и В5+ позволяет значимо снизить уровень загрязнения продукта по олову при температуре 920°С: с 0,26% (№2) до 0.089-0.17% (№5, №8, №9). Однако наиболее существенный эффект наблюдается при проведении электролиза в низкотемпературном расплаве (750°С), в котором наблюдается очень высокая стабильность предлагаемых составов инертных анодов, а содержание олова в алюминии не превышает 110-130 ppm (№6, №7). Введение трехвалентных катионов в состав керамики приводит к закономерному снижению проводимости материала. При небольшой концентрации соответствующей добавки (МnО2 в примерах №5-7) проводимость снижается в 2-4 раза, что, однако, позволяет использовать такие материалы при электролизе. Дальнейшее увеличение содержания трехвалентных катионов путем повышения концентрации добавок (Fе2О3 и Аl2О3 в примерах №8-10) делает невозможным проведение электролиза при 750°С из-за высокого сопротивления керамического анода. Неравномерное токораспределение, значительно усиливающееся с ростом сопротивления анодного материала, приводит к росту скорости коррозии анода (ср. №5 и №8-10). Снижение сопротивления таких материалов может быть достигнуто введением в состав анода металлической компоненты (№11), при этом достигается как снижение напряжения на ячейке в ходе электролиза, так и уровня загрязнения алюминия. Аналогичных результатов удается достигнуть и при введении металлической фазы в состав керамики с низким содержанием трехвалентного катиона (№12).

Как показывают результаты лабораторного тестирования, предлагаемые оксидные материалы обладают высокой стабильностью в глиноземсодержащих средне- и низкотемпературных фторидных расплавах в условиях анодной поляризации. Поэтому аноды из этих материалов имеют низкую скорость коррозии и позволяют получать алюминий с низким содержанием компонентов анода.

Источники информации

1. Galasiu, R. Galasiu, J. Thonstad, Inert Anodes for Aluminium Electrolysis, 1 st Edition, Aluminium-Verlag, Germany, 2007.

2. Беляев A.И., Студенцов Я.В. Электролиз глинозема с несгораемыми анодами из окислов // Легкие металлы. 1937. №3. С.17-21.

3. H.-J. Klein, Process for the electrolytic production of aluminum, US Patent 3718550, 27.02.1973.

4. H.Alder, Process for the electrolysis of a molten charge using inconsumable bi-polar electrodes, US Patent 3930967, 6.01.1976.

5. H.Alder, Process for the electrolysis of a molten charge using inconsumable anodes, US Patent 3974046, 10.08.1976.

6. H.Alder, Inconsumable electrodes, US Patent 4057480, 8.11.1977.

7. H.Alder, Anode of dimensionally stable oxide-ceramic individual elements, US Patent 4357226, 2.11.1982.

8. D.R.Secrist, J.M.Clark, Corrosion-Resistant ceramic electrode for electrolytic processes, US Patent 4484997, 27.11.1984.

9. J.M.Clark, D.R.Secrist, Monolithic composite electrode for molten salt electrolysis, US Patent 4491510, 1.01.1985.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 230.
27.12.2014
№216.013.1449

Катодный кожух алюминиевого электролизера

Изобретение относится к конструкции катодного кожуха электролизера для получения алюминия электролитическим способом. Катодный кожух содержит продольные и торцевые стенки с вертикальными ребрами жесткости, днище, шпангоуты, которые охватывают стенки и днище, и фланцевый лист. Фланцевый лист...
Тип: Изобретение
Номер охранного документа: 0002536617
Дата охранного документа: 27.12.2014
10.02.2015
№216.013.225b

Способ автоматического контроля криолитового отношения

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, а именно к области управления электролизом алюминия. Способ автоматического контроля криолитового отношения электролита алюминиевого электролизера, включающий измерение силы тока, напряжения на...
Тип: Изобретение
Номер охранного документа: 0002540248
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2653

Зонт открытой рудовосстановительной электропечи

Изобретение относится к области металлургии, в частности к элементам конструкции газоотводящего оборудования открытой рудовосстановительной печи для производства, преимущественно, кристаллического кремния и ферросилиция. Зонт состоит из крышки, стен корпуса меньшего диаметра и подвижного...
Тип: Изобретение
Номер охранного документа: 0002541264
Дата охранного документа: 10.02.2015
20.03.2015
№216.013.3238

Алюминиевый сплав

Изобретение относится к металлургии алюминиевых сплавов и может быть использовано преимущественно для изготовления катанки электротехнического назначения, а также деформированных полуфабрикатов, используемых в строительстве, машиностроении и других областях народного хозяйства. Сплав содержит...
Тип: Изобретение
Номер охранного документа: 0002544331
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3265

Способ создания противофильтрационного экрана гидротехнического сооружения для хранения промышленных отходов

Изобретение относится к способам предотвращения загрязнения грунтов и подземных вод компонентами промышленных отходов, в частности к созданию противофильтрационных экранов полигонов захоронения и складирования отходов, шламовых полей. При создании противофильтрационного экрана гидротехнического...
Тип: Изобретение
Номер охранного документа: 0002544376
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.326b

Изолирующий материал для шламохранилищ промышленных отходов

Предложенное изобретение относится к строительным материалам и утилизации отходов электротермического производства. Изолирующий материал для шламохранилищ промышленных отходов включает глиносодержащий материал и материал в виде техногенного отхода, в качестве глиносодержащего материала он...
Тип: Изобретение
Номер охранного документа: 0002544382
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.33c2

Способ кислотной переработки красных шламов

Изобретение относится к способу кислотной переработки красных шламов, получаемых в процессе производства глинозема, и может применяться в технологиях утилизации отходов шламовых полей глиноземных заводов. Способ включает выщелачивание с использованием в качестве выщелачивающего реагента...
Тип: Изобретение
Номер охранного документа: 0002544725
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.33c4

Футеровка алюминиевого электролизера с инертными анодами

Изобретение относится к футеровке алюминиевого электролизера. Футеровка включает подину и токоотводящие элементы из алюминия, выполненные жидкими в верхней части в контакте с расплавом алюминия и твердыми - в нижней части и установленные проходящими вертикально через подину. Подина выполнена из...
Тип: Изобретение
Номер охранного документа: 0002544727
Дата охранного документа: 20.03.2015
20.04.2015
№216.013.41d6

Ошиновка алюминиевых электролизеров продольного расположения

Изобретение относится к ошиновке последовательно соединенных электролизеров получения алюминия с продольным расположением в корпусе. Ошиновка содержит анодные шины, стояки и катодные стержни, разделенные на группы, каждая из которых соединена с отдельной катодной шиной. Катодные шины групп...
Тип: Изобретение
Номер охранного документа: 0002548352
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.41d8

Устройство для дозированной подачи сырья в алюминиевый электролизер

Изобретение относится к устройствам для подачи сырья, в частности глинозема, фторида алюминия, дробленого электролита, в алюминиевый электролизер. Устройство содержит бункер дозируемого материала, дозировочную камеру с установленным штоком и пневмоцилиндром. На штоке жестко закреплен в верхней...
Тип: Изобретение
Номер охранного документа: 0002548354
Дата охранного документа: 20.04.2015
Показаны записи 31-40 из 54.
20.03.2019
№219.016.e7d0

Способ электролитического получения металлов при одновременном осаждении примесей

Изобретение относится к способу электролитического получения металлов. В электролизере, содержащем катод, анод и коллекторы растворенных в электролите примесей, выполненные в виде электродов, потенциал которых поддерживают положительнее потенциала восстановления металла и отрицательнее...
Тип: Изобретение
Номер охранного документа: 0002425177
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.ef48

Электролит для получения алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземного расплава. Технический результат заключается в интенсификации процесса получения алюминия, повышении его технико-экономических показателей, увеличении срока службы электролизера,...
Тип: Изобретение
Номер охранного документа: 0002288977
Дата охранного документа: 10.12.2006
29.03.2019
№219.016.f29c

Способ крепления ребер охлаждения на катодный кожух алюминиевого электролизера

Изобретение относится к металлургии алюминия электролизом расплавленных солей, в частности к способу крепления ребер охлаждения на катодный кожух алюминиевого электролизера. Способ крепления ребер охлаждения на катодный кожух алюминиевого электролизера, содержащий футеруемую изнутри...
Тип: Изобретение
Номер охранного документа: 0002376402
Дата охранного документа: 20.12.2009
29.03.2019
№219.016.f449

Катодное устройство электролизера для производства алюминия

Изобретение относится к электролитическому получению алюминия, а именно к конструкции катодного устройства алюминиевого электролизера. Устройство содержит кожух, катодные блоки с катодными стержнями, футеровку под катодными блоками. Футеровка выполнена из слоя выравнивающего насыпного...
Тип: Изобретение
Номер охранного документа: 0002320782
Дата охранного документа: 27.03.2008
29.03.2019
№219.016.f468

Электрический контактный узел инертного анода для получения алюминия в солевом расплаве и способ его монтажа

Изобретение относится к изготовлению инертных анодов для электролитического получения алюминия в криолит-глиноземном расплаве. Электрический контактный узел инертного анода содержит полый корпус инертного анода, выполненный из оксидной керамики на основе SnO, и металлический токоподводящий...
Тип: Изобретение
Номер охранного документа: 0002418889
Дата охранного документа: 20.05.2011
29.03.2019
№219.016.f615

Инертный анод электролизера для производства алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом, а именно к конструкции инертных анодов электролизеров для производства алюминия. Инертный анод электролизера для производства алюминия содержит корпус, выполненный из электропроводного материала,...
Тип: Изобретение
Номер охранного документа: 0002408743
Дата охранного документа: 10.01.2011
10.04.2019
№219.016.ffe2

Способ автоматического устранения анодных эффектов

Изобретение относится к области электролитического получения алюминия из расплавов и предназначено для автоматического устранения анодных эффектов в электролизерах с самообжигающимся анодом. Техническим результатом является увеличение надежности гашения, снижение времени гашения анодного...
Тип: Изобретение
Номер охранного документа: 0002285755
Дата охранного документа: 20.10.2006
29.04.2019
№219.017.3e6c

Многополярная электролизная ванна для получения жидких металлов электролизом расплавов и способ установки электролизных ванн

Группа изобретений относится к цветной металлургии, а именно к конструкциям для производства металлов электролизом расплавленного электролита, в частности алюминия, и способу установки электролизных ванн. Получаемыми металлами помимо алюминия могут быть магний, литий, натрий, свинец....
Тип: Изобретение
Номер охранного документа: 0002275443
Дата охранного документа: 27.04.2006
29.04.2019
№219.017.3f43

Оксидный материал для несгораемых анодов алюминиевых электролизеров (варианты)

Изобретение относится к области цветной металлургии и может быть использовано при изготовлении инертных анодов для получения металлов электролизом расплавов, в частности для электролитического получения алюминия в криолит-глиноземных расплавах. В качестве материала для несгораемых анодов...
Тип: Изобретение
Номер охранного документа: 0002291915
Дата охранного документа: 20.01.2007
29.04.2019
№219.017.3f55

Способ нанесения смачиваемого покрытия подины алюминиевого электролизера

Изобретение относится к области цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземных расплавов. Способ нанесения (синтеза) смачиваемого диборидного покрытия подины алюминиевого электролизера осуществляют в период пуска электролизной ванны непосредственно из...
Тип: Изобретение
Номер охранного документа: 0002299278
Дата охранного документа: 20.05.2007
+ добавить свой РИД