×
10.04.2019
219.017.0112

Результат интеллектуальной деятельности: СПОСОБ ВЫДЕЛЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ C-C И РЕФОРМИРОВАННОГО КОМПОНЕНТА БЕНЗИНА ИЗ РИФОРМАТА БЕНЗИНОВОЙ ФРАКЦИИ

Вид РИД

Изобретение

Аннотация: Использование: нефтепереработка и нефтехимия. Сущность: проводят жидкостную многоступенчатую противоточную экстракцию ароматических углеводородов из риформата бензиновой фракции сульфоланом с 0,2 - 2% масс. воды при соотношении к сырью 1.6-2.0:1 по массе и температуре процесса 30-50°С с последующим удалением неароматических углеводородов, остающихся в экстрактной фазе, методом экстрактивно-азеотропной ректификации с сульфоланом и высокооктановыми низшими алифатическими спиртами при соотношении по массе 0.55-0.70:1 и 0.05-0.08:1 соответственно. Технический результат: получение бензола, толуола, ксилолов, суммы аренов С и реформированного компонента бензина, удовлетворяющего экологическим требованиям. 5 табл., 1 ил.

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для выделения ароматических углеводородов С69 из риформата бензиновой фракции с одновременным получением реформулированного экологически чистого компонента автомобильного бензина.

В соответствии с европейскими спецификациями на автомобильные бензины Евро-3, действующими с 2001 г., суммарное содержание ароматических углеводородов в бензине не должно превышать 42% (об.), в том числе бензола - не более 1% (об.). Программа Евро-4, которая должна быть введена в 2005 г., предусматривает дальнейшее снижение содержания суммы аренов в бензине до 30% (об.) [1].

В то же время основным компонентом российских автомобильных бензинов служит катализат риформинга с концентрацией аренов до 65-68% (об.), в том числе бензола - до 8% (об.).

Бензол и толуол экстрагируют в основном из риформата фракции 62-105°С, а суммарные ксилолы и частично толуол - из риформата фракции 105-140°С [2, 3]. Недостаток применяющихся в промышленности способов производства бензола и его гомологов - необходимость предварительного ректификационного разделения сырья на узкокипящие бензиновые фракции с последующими раздельно проводящимися процессами каталитического риформинга и экстракции или экстрактивной ректификации - приводит к увеличению необходимых капиталовложений и энергозатрат.

Арены C8 выделяют также из ксилольной фракции катализата риформинга методом простой ректификации [4]. При этом потери ксилолов на промышленной установке из-за попадания их в дистиллят в составе азеотропов с насыщенными углеводородами с температурой кипения 132-152°С, а также с кубовым остатком колонны выделения суммарных ксилолов достигают 38%.

Снижение капиталовложений и энергозатрат возможно в результате экстракционного выделения аренов С6-C9 из риформата широкой бензиновой фракции н.к. - 180°С с последующей очисткой от примесей насыщенных углеводородов экстрактивно-азеотропной ректификацией.

Наиболее близок по технической сущности и достигаемому эффекту к предлагаемому изобретению способ выделения аренов из углеводородных фракций экстракцией сульфоланом с последующей экстрактивной ректификацией (Пат.80-05862, Нидерланды, 1982; С.А., v.97, 130410). Недостатком данного способа, принятого в качестве прототипа, как и большинства промышленных процессов экстракции ароматических углеводородов, является большой расход рециркулирующего потока (рисайкла) - до 100% маc. и выше на сырье, отгоняющегося их экстрактной фазы, в котором концентрируются примеси насыщенных углеводородов наряду со значительным количеством наиболее летучего арена - бензола. Рисайкл возвращают в экстракционную колонну, в результате чего наиболее трудно удаляемые насыщенные углеводороды не выводятся из цикла, снижается производительность экстрактора, уменьшается концентрация экстрагента в системе и, как следствие, селективность процесса разделения углеводородов.

Одна из целей данного изобретения - полное исключение рециркулирующих углеводородных потоков. Поставленная цель достигается при удалении насыщенных углеводородов, остающихся в экстрактной фазе, с использованием экстрактивно-азеотропной ректификации с тем же селективным растворителем, что и на стадии экстракции - сульфоланом, и с высокооктановым алифатическим спиртом в качестве азеотропобразующего компонента, не нуждающегося в регенерации. Дистиллят колонны экстрактивно-азеотропной ректификации объединяется с рафинадом, полученным на стадии экстракции, и объединенный продукт является экологически чистым реформулированным компонентом автомобильных бензинов.

В качестве сырья использовали стабильный катапизат риформинга фракции 62-180°С следующего состава, % маc.: бензол - 6.9, толуол - 22.5, арены C8 - 17,2, арены С9 - 9.0, насыщенные углеводороды - 44.4.

Условия многоступенчатой противоточной экстракции аренов из риформата бензиновой фракции представлены в табл.1, а полученные результаты - в табл.2. Рафинат, удовлетворяющий современным и перспективным экологическим требованиям по содержанию как бензола, так и суммы аренов, получен в условиях обоих опытов, однако выход рафината в опыте №1 низок, а в экстракте остается много насыщенных углеводородов.

Поэтому последующие опыты экстрактивно-азеотропной ректификации проводили с использованием экстрактной фазы, полученной в опыте №2. Условия процесса экстрактивно-азеотропной ректификации представлены в табл.3, а полученные результаты - в табл.4.

Пример 1.

В нижнюю часть экстракционной колонны эффективностью 5 теоретических ступеней подают катализат риформинга фр. 62-180°С (расход 1000 г/ч), содержащий 55.6% маc. аренов, состав которых приведен выше. В верхнюю часть экстракционной колонны при той же температуре со скоростью 2000 г/ч подают сульфолан, содержащий 0.2% маc. воды.

В результате противоточной многоступенчатой экстракции после выхода на стабильный режим отбираются рафинатная и экстрактная фазы, состав которых анализируется методом газожидкостной хроматографии. По данным анализа рассчитывают выход и состав рафината, экстракта и степень извлечения аренов. Результаты опыта приведены в табл.2, опыт №1.

Пример 2.

В нижнюю часть экстрактора эффективностью 7 теоретических ступеней подают катализат риформинга фр. 62-180°С того же состава со скоростью 1000 г/ч при температуре 30°С. В верхнюю часть экстрактора подают со скоростью 1600 г/ч при температуре 50°С сульфолан, содержащий 2% маc. воды.

В результате противоточной экстракции после выхода на стабильный режим отбирается рафинатная фаза, которая отмывается водой от примесей экстрагента. Балансовое количество экстрактной фазы направляется в колонну экстрактивно-азеотропной ректификации эффективностью 15 теоретических тарелок. Колонна орошается сверху сульфоланом (280 г/ч), а снизу подается азеотропобразующий компонент - этанол (32 г/ч). Дистиллят колонны экстрактивно-азеотропной ректификации объединяется без регенерации азеотропобразующего компонента с рафинатом экстракционной колонны и анализируется. Из кубового остатка колонны экстрактивно-азеотропной ректификации с помощью острого водяного пара отгоняются ароматические углеводороды, которые вторичной ректификацией разделяют на бензол, толуол, арены C8 и С9.

Материальный баланс комбинированного процесса выделения аренов С69 из риформата бензиновой фракции в примере 2 представлен в табл.5. Объединенный поток рафината и дистиллята колонны экстрактивно-азеотропной ректификации может быть использован в качестве реформулированного экологически чистого компонента автомобильных бензинов. Содержание основного вещества в товарных ароматических углеводородах составило, % мас.: бензол - 99.9, толуол - 99.95, арены C8 - 99.5.

Принципиальная схема комбинированного процесса выделения аренов из риформата бензиновой фракции представлена на чертеже. В нижнюю часть экстрактора (1) подается сырье, в верхнюю - сульфолан. Из рафинатной фазы в экстракторе (2) реэкстрагируется водой сульфолан. В ректификационной колонне (3) из водного раствора сульфолана отгоняется вода, возвращаемая в экстрактор (2).

Из экстрактной фазы в колонне экстрактивно-азеотропной ректификации (4), в нижнюю часть которой подается этанол, а наверх - сульфолан, отгоняется азеотроп этанола с насыщенными углеводородами экстрактной фазы. Дистиллят колонны (4) объединяется с рафинатом и используется как компонент бензина без регенерации этанола. Из кубового остатка колонны (4) в ректификационной колонне (5) с помощью острого водяного пара отпаривается экстракт. Сульфолан после охлаждения в теплообменнике частично подается на орошение колонны (4), а большая часть возвращается в экстрактор (1). Из экстракта в ректификационных колоннах (6), (7) и (8) выделяют соответственно бензол, толуол и суммарные ксилолы.

Таблица 1
Условия опытов многоступенчатой противоточной экстракции аренов из риформата бензиновой фракции сульфоланом
Параметры процесса№№ опытов
12
Число теоретических ступеней57
Температура, °С:  
верх экстрактора5050
низ экстрактора5030
Массовое соотношение сульфолан:сырье2:11.6:1
Содержание воды в сульфолане, % мас.0.22.0

Таблица 3
Условия опытов экстрактивно-азеотропной ректификации при удалении насыщенных углеводородов из экстрактной фазы опыта №2
Параметры процесса№№ опытов
2а2в
Массовое соотношение к экстрагенту:  
сульфолан0.55:10.7:1
этанол0.05:10.08:1
Массовое соотношение в расчете на риформат:  
сульфолан0.22:10.28:1
этанол0.02:10.032:1
Конечная температура кубового остатка, °С180180

Таблица 4
Результаты очистки аренов экстрактивно-азеотропной ректификацией
Параметры процесса№№ опытов
2я2s
Выход углеводородной части дистиллята на риформат, % мас.4.85.5
Содержание аренов, % мас.:  
углеводородная часть риформата19.812.0
кубовый остаток98.499.7
Степень извлечения, % мас.:  
суммы аренов99.099.1
в том числе: бензол94.294.0
толуол99.899.9
арены C8+100100
Степень извлечения при комбинированном процессе, % мас.:  
суммы аренов67.367.4
в том числе: бензол89.589.3
толуол76.876.9
арены C869.069.0
арены С924.024.0

Таблица 5
Материальный баланс комбинированного процесса выделения аренов С69+ из катализата риформинга бензиновой фракции
ПриходРасход
Компонент% мас.Компонент% мас.
Риформат100Компонент бензина65.4
в т.ч.: бензол6.9Бензол6.17
толуол22.5Толуол17.3
арены C817.2Арены C811.87
арены С9+9.0Арены С9+2.16
насыщенные углеводороды44.4  
Этанол3.2  
Сульфолан с 2% мас.воды188  

Источники информации

1. Каминский Э.Ф., Хавкин В.А. Глубокая переработка нефти: технологический и экономический аспекты. – М.: Изд-во "Техника". ООО "ТУМАГРУПП", 2001, 384 с.

2. Экономика производства ароматических углеводородов / А.Н.Давыдов, В.Л.Клименко, М.Л.Колесов и др. – М.: ЦНИИТЭнефтехим, 1978, 68 с.

3. Гайле А.А., Сомов В.Е., Варшавский О.М. Ароматические углеводороды: Выделение, применение, рынок. Справочник. – СПб: Химиздат, 2000, 544 с.

СпособвыделенияароматическихуглеводородовС-Сизриформатабензиновойфракцииэкстракциейсульфоланом,содержащим0,2-2,0мас.%воды,отличающийсятем,чтополученнуюэкстрактнуюфазуподвергаютэкстрактивно-азеотропнойректификациивприсутствиисульфоланаивысокооктановогоалифатическогоспирта,преимущественноэтанола,причемверхнийпродуктколонныэкстрактивно-азеотропнойректификациибезрегенерацииазеотропобразующегокомпонентаиспользуютвкачествереформированногокомпонентабензина.
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
10.11.2015
№216.013.8e99

Способ выделения бензола из смесей с неароматическими углеводородами

Изобретение относится к способу выделения бензола из смесей с неароматическими углеводородами с одновременным получением дистиллята экстрактивной ректификацией. Способ характеризуется тем, что в качестве селективного растворителя используются смеси, содержащие 30-50% мас. смешанного...
Тип: Изобретение
Номер охранного документа: 0002568114
Дата охранного документа: 10.11.2015
18.05.2019
№219.017.546f

Способ каталитического риформинга бензиновых фракций на алюмоплатинорениевом катализаторе

Использование: нефтепереработка и нефтехимия. Сущность: сульфидирование проводят дополнительно в процессе риформинга при температуре входа в зону риформинга не выше 485°С введением серосодержащих соединений дозами по 0,001-0,02% в расчете на серу от массы катализатора с перерывами между дозами...
Тип: Изобретение
Номер охранного документа: 0002281969
Дата охранного документа: 20.08.2006
18.05.2019
№219.017.56e9

Способ подготовки к переработке стойких ловушечных водонефтяных эмульсий

Изобретение может быть использовано на нефтеперерабатывающих предприятиях для переработки высокообводненных стойких ловушечных водонефтяных эмульсий, содержащих повышенное количество механических примесей. Способ подготовки к переработке стойких ловушечных водонефтяных эмульсий заключается в их...
Тип: Изобретение
Номер охранного документа: 0002318865
Дата охранного документа: 10.03.2008
18.05.2019
№219.017.5707

Способ выделения бензола из смесей с неароматическими углеводородами

Изобретение относится к способу выделения бензола из смесей с неароматическими углеводородами с одновременным получением дистиллята экстрактивной ректификацией, характеризующемуся тем, что в качестве селективного растворителя используются смеси, содержащие 14,7-48,5% масс. сульфолана или...
Тип: Изобретение
Номер охранного документа: 0002381208
Дата охранного документа: 10.02.2010
18.05.2019
№219.017.5bbe

Способ экстракции ароматических углеводородов из катализата риформинга фракции 62-105c

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано в процессе выделения ароматических углеводородов С-С из катализатов риформинга фракции 62-105С жидкостной экстракцией селективными растворителями: триэтиленгликолем, сульфоланом, смесями триэтиленгликоля с...
Тип: Изобретение
Номер охранного документа: 02177023
Дата охранного документа: 20.12.2001
Показаны записи 1-1 из 1.
18.05.2019
№219.017.5bbe

Способ экстракции ароматических углеводородов из катализата риформинга фракции 62-105c

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано в процессе выделения ароматических углеводородов С-С из катализатов риформинга фракции 62-105С жидкостной экстракцией селективными растворителями: триэтиленгликолем, сульфоланом, смесями триэтиленгликоля с...
Тип: Изобретение
Номер охранного документа: 02177023
Дата охранного документа: 20.12.2001
+ добавить свой РИД