×
08.04.2019
219.016.fe67

Результат интеллектуальной деятельности: Способ охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД), ротор ТВД и лопатка ротора ТВД, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора ТВД

Вид РИД

Изобретение

Аннотация: Способ охлаждения ротора турбины высокого давления газотурбинного двигателя осуществляют путем того, что ротор охлаждают вторичным потоком воздуха из камеры сгорания газогенератора двигателя, имеющим температуру более низкую, чем температура первичного потока рабочего тела из жаровой трубы камеры сгорания. Поток воздуха на входе в тракт воздушного охлаждения ротора турбины высокого давления подают через совмещенный с указанным трактом входной узел тракта воздушного охлаждения соплового аппарата в узел аппарата закрутки воздуха, включающий две перекрестно ориентированные кольцевые конические полости и аппарат закрутки воздуха. На выходе из второй полости охлаждающий воздух попадает в аппарат закрутки и через систему конфузорных цилиндроконических сопел, отклоненных в направлении к выходу из двигателя и в сторону вращения рабочего колеса турбины высокого давления, поступает в кольцевой канал, образованный смежными стенками диска рабочего колеса турбины высокого давления и напорного диска. Далее под напором воздух направляют в систему диффузорных каналов в ободе диска, из которых воздух поступает в канал в хвостовике лопаток, попадая в раздаточный коллектор в полости лопатки. В коллекторе охлаждающий воздух трансформируют в два потока. Фронтальную часть потока направляют через радиально ориентированный ряд отверстий в разделительной стенке в канал циклонного охлаждения входной кромки пера, охлаждая ее изнутри, и через другой ряд отверстий в спинке пера лопатки охлаждающий воздух выводят из полости и выполняют настильное охлаждение снаружи спинки пера лопатки. Тыльная большая часть потока из раздаточного коллектора поступает в вихревую матрицу, дополненную турбулизатором, охлаждая заднюю часть пера лопатки, и через щель в выходной кромке пера отработанный воздух выходит в поток рабочего тела проточной части турбины. Изобретение направлено на повышение эффективности охлаждения теплонапряженных элементов турбины высокого давления, надежности и ресурса турбины высокого давления и двигателя в целом. 4 н. и 3 з.п. ф-лы, 5 ил.

Группа изобретений относится к области авиадвигателестроения, а именно, к способу охлаждения ротора турбины высокого давления стационарного газотурбинного двигателя авиационного типа в составе газоперекачивающих агрегатов.

Известен способ охлаждения ротора турбины высокого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - диска и лопаток рабочего колеса. Ротор турбины выполнен с безлопаточным аппаратом закрутки охлаждающего воздуха, подаваемого в полости лопаток (RU 2614909 С1, опубл. 30.03.2017).

Известен способ охлаждения ротора турбины высокого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - диска и лопаток рабочего колеса. Ротор турбины выполнен с безлопаточным аппаратом закрутки охлаждающего воздуха, подаваемого в полости лопаток. В ободе диска и ножках лопаток выполнены пазы под замки фиксации лопаток. Каналы подвода воздуха в лопатку выполнены в виде паза в диске под замком лопаток. Охлаждающие полости лопаток последовательно сообщены с каналами подвода воздуха в лопатку (RU 2614453 С1, опубл. 30.03.2017).

Известен способ охлаждения рабочих лопаток ротора турбины ГТД, включающий отбор охлаждающего воздуха из камеры сгорания, его транспортировку в аппарат закрутки, последующий подвод охлаждающего воздуха во внутренние полости рабочих лопаток через воздушные каналы в рабочем колесе турбины. Внутреннюю полость каждой рабочей лопатки, расположенную у входной кромки, отделяют от остальной полости перегородкой, направленной вдоль входной кромки, образованную полость сообщают перфорационными отверстиями в стенке с проточной частью турбины (RU 2387846 С1, опубл. 27.04.2010).

К недостаткам известных решений относятся повышенная конструктивная сложность турбины, недостаточная конструктивная проработанность системы охлаждения наиболее теплонапряженных участков рабочего колеса турбины, неадаптированность конкретно к техническим решениям ГТД газоперекачивающего агрегата, сложность получения компромиссного сочетания повышенных значений КПД и ресурса двигателя с одновременным повышением компактности и снижением материало- и энергоемкости.

Задача, решаемая группой изобретений, объединенных единым творческим замыслом, состоит в повышении эффективности охлаждения элементов рабочего колеса ротора ТВД, ресурса и надежности турбины и двигателя в целом, используемого в составе газоперекачивающих агрегатов.

Поставленная задача решается тем, что способе охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД) в составе газотурбинной установки (ГТУ) газоперекачивающего агрегата (ГПА), согласно изобретению ротор ТВД охлаждают вторичным потоком воздуха из камеры сгорания (КС) газогенератора двигателя, имеющем температуру, более низкую температуры первичного потока рабочего тела из жаровой трубы КС, при этом поток воздуха на входе в тракт воздушного охлаждения ротора ТВД подают через совмещенный с указанным трактом входной узел тракта воздушного охлаждения соплового аппарата (СА) ТВД, а именно через входные отверстия в наружной полке СА поток воздуха направляют в снабженную открытым на проток дефлектором заднюю полость лопатки СА ТВД с пропуском при минимальном нагреве большей части потока воздуха для охлаждения ротора ТВД, откуда через транзитную полость малой полки соплового блока СА и выходные патрубки внутреннего кольца СА охлаждающий воздух последовательно подают в две перекрестно ориентированные кольцевые конические полости узла аппарата закрутки воздуха, сопряженные конструктивно и по транзитному потоку воздуха тракта охлаждения ротора ТВД; на выходе из второй из указанных полостей охлаждающий воздух попадает в аппарат закрутки и через систему конфузорных цилиндроконических каналов - сопел, отклоненных в направлении к выходу из двигателя и в сторону вращения рабочего колеса ТВД, охлаждающий воздух поступает в кольцевой канал, образованный смежными стенками диска рабочего колеса ТВД и напорного диска, и далее под действием центробежных сил под напором воздух направляют в систему входных диффузорных каналов, выполненных в переходной зоне полотна и в ободе диска рабочего колеса по числу лопаток, размещенных в диске рабочего колеса ТВД с угловой частотой γл.=Nл./2π=(12,1÷17,2) [ед/рад], из которых воздух поступает в хвостовик лопаток, последовательно проходит участки канала тракта в замке, ножке и полке хвостовика, попадая в расположенный в передней части полости лопатки радиально ориентированный раздаточный коллектор, образованный передней частью спинки и корыта пера лопатки; в коллекторе охлаждающий воздух трансформируют в два потока фронтальный и тыльный в соотношении (1):(1,42÷1,94), при этом фронтальную часть потока направляют через радиально ориентированный ряд отверстий во внутренней разделительной стенке с шагом, превышающим диаметры отверстий не менее чем в 4,2 раза, тангенциальными струями подают в параллельно расположенный с коллектором и вписанный частью периметра во входную кромку пера лопатки фронтальный канал циклонного охлаждения кромки, где настильными струями охлаждают изнутри входную кромку и через другой ряд отверстий, выведенных в переднюю часть спинки пера лопатки с шагом превышающем диаметры отверстий не менее чем в 2,15 раза и с осями, отклоненными по потоку рабочего тела, охлаждающий воздух выводят из полости и выполняют настильное охлаждение снаружи спинки пера лопатки; а тыльная большая часть потока из раздаточного коллектора поступает во внутреннюю вихревую матрицу, примыкающую к коллектору, и охлаждает заднюю часть пера лопатки посредством встречно наклоненных ребер двух полуматриц, выполненных на внутренних поверхностях выходной части спинки и корыта пера лопатки, с образованием перекрестной решетки с углом ϕр.м., между осями каналов, определенным в диапазоне значений ϕр.м.=(1,12÷1,48) [рад]; из матрицы охлаждающий воздух преодолевает на выходе из полости лопатки турбулизатор, образованный не менее чем одним параллельным выходной кромке пера рядом направляющих ребер, пространственно отклоненных от оси двигателя для увеличения отбора избыточной теплоты, и через щель в выходной кромке пера отработанный воздух выходит в поток рабочего тела проточной части турбины.

При этом в вихревой матрице ребра полуматрицы корыта пера лопатки могут выполнять с восхождением к выходу из матрицы оси каналов, образующей с базовой плоскостью в проекции на условную осевую плоскость, совмещенную с радиальной осью лопатки, угол αр.к.л., определенный в диапазоне значений αр.к.л.=(0,66÷0,95) [рад], а в ответной полуматрице в спинке пера лопатки ребра в проекции на ту же осевую плоскость, совмещенную с осью лопатки, на угол αр.с.л., определенный в диапазоне значений αр.с.л.=(0,84÷1,26) [рад] с нисходящим к выходу из матрицы направлением.

Поставленная задача в части ротора ТВД газотурбинного двигателя в составе ГТУ ГПА решается тем, что согласно изобретению в процессе работы ГТД теплонапряженные элементы ротора ТВД охлаждают описанным выше способом.

Поставленная задача в части лопатки ротора ТВД газотурбинного двигателя в составе ГТУ ГПА решается тем, что согласно изобретению лопатка выполнена полой, охлаждаемой, при этом в процессе работы ГТД лопатку ротора ТВД охлаждают описанным выше способом.

Поставленная задача решается также тем, что узел аппарата закрутки воздуха тракта воздушного охлаждения ротора ТВД газогенератора ГТД в составе ГТУ ГПА, согласно изобретению включает две последовательно перекрестно ориентированные кольцевые конические полости, сопряженные конструктивно и по транзитному потоку воздуха тракта охлаждения ротора ТВД, аппарат закрутки воздуха с системой конфузорных цилиндроконические каналов - сопел, выполненных с угловой частотой γс.а.з., определенной в диапазоне значений γс.а.з.=(4,62÷7,17) [ед/рад], а также образованный фронтальным напорным диском, разъемно соединенным с диском ротора через цилиндрический фланец, выполненный за одно целое с полотном в радиальной зоне, примыкающей к ободу диска, и образующий совместно с диском ротора кольцевой канал для подвода к входным каналам тракта охлаждения лопаток закрученного потока охлаждающего воздуха через конфузорные сопла аппарата закрутки, при этом сопла отклонены от оси двигателя в тыльную сторону по направлению потока рабочего тела в проекции на условную осевую плоскость двигателя, проведенную через двойную точку пересечения оси канала указанной плоскостью и касательной к окружности центров выходного контура каналов на угол ξ1к.а.з., определенный в диапазоне значений ξ1к.а.з.=(0,4440,62) [рад] и кроме того ось канала сопла отклонена в сторону вращения диска ТВД на угол ξ2к.а.з., образующий в проекции на плоскость, нормальную к оси двигателя, считая от вертикальной плоскости симметрии двигателя, определенный в диапазоне значений ξ2к.а.з.=(0,15÷0,21) [рад], а на выходе потока воздуха кольцевой канал сообщен с системой входных каналов тракта воздушного охлаждения лопаток, расположенных с частотой лопаток ротора непосредственно под замком каждой лопатки с диффузорным участком подачи воздуха в полость замка и через участок тракта, пересекающий внутри хвостовика ножку и полку лопатки, во внутреннюю полость пера лопатки.

При этом сопла аппарата закрутки могут быть выполнены с диаметром на входе, превышающим диаметр на выходе не менее чем на 22,5%.

Первая из указанной пары конических полостей может быть ограждена двумя установленными соосно, полифункциональными усеченными коническими оболочками, имеющими общую кольцевую вершину и выполненными с разным наклоном образующих и величинами периметров раструбных торцов, разнесенных в осевом направлении двигателя с интервалом, достаточным для равнорадиусного опорного сопряжения с внутренним кольцом СА ТВД, причем внутренняя из указанных оболочек с меньшим раструбом снабжена системой пропускных отверстий тракта охлаждения ротора ТВД, а пара конических кольцевых оболочек, ограждающих другую из указанных коническую полость, перекрестно сопряженно смонтирована на внутренней оболочке первой пары с охватом кольцевого ряда пропускных отверстий тракта, и в зоне схождения к вершине непосредственно под свободным торцом напорного диска выполнена примыкающей к аппарату закрутки.

Технический результат, достигаемый приведенной совокупностью признаков группы изобретений, объединенных единых творческих замыслом, состоит в повышении эффективности охлаждения ротора ТВД и лопатки рабочего колеса ротора ТВД за счет проработанности узла аппарата закрутки воздуха, подаваемого на охлаждение ротора ТВД и конструктивных аэродинамических параметров лопатки ротора ТВД, достигая тем самым расширения температурного диапазона эксплуатации лопаток и повышения эффективности охлаждения ротора ТВД в процессе работы двигателя, и как следствие, повышение надежности и ресурса турбины и двигателя в целом.

Сущность группы изобретений поясняется чертежами, где:

на фиг. 1 изображен турбина высокого давления с сопловым аппаратом ТВД, продольный разрез;

на фиг. 2 - лопатка рабочего колеса ТВД, в аксонометрии;

на фиг. 3 - лопатка рабочего колеса ТВД, продольный разрез;

на фиг. 4 - фрагмент аппарата закрутки с конфузорным соплом, поперечный разрез;

на фиг. 5 - лопатка рабочего колеса ТВД, поперечный разрез.

Ротор турбины 1 высокого давления ГТД группы изобретений содержит рабочее колесо, включающее диск 2 и лопаточный венец с системой рабочих лопаток 3, размещенных с угловой частотой γл.=Nл./2π=(12,1÷17,2) [ед/рад], где Nл. - число лопаток в лопаточном венце рабочего колеса ТВД.

Диск 2 рабочего колеса выполнен в виде моноэлемента и включает ступицу 4 с центральным отверстием и полотно 5 с ободом 6. Вал РВД образован сочетанием выполненных за одно целое с диском консольных кольцевых элементов 7 и 8 для разъемного фланцевого соединения с валом 9 КВД и носком 10 задней опоры ТВД. Ротор ТВД включает фронтальный напорный диск 11, который разъемно соединен с диском 2 ротора через цилиндрический фланец 12, выполненный за одно целое с полотном 5 с фронтальной стороны последнего в радиальной зоне, примыкающей к ободу 6 диска 3. Напорный диск 11 образует совместно с диском 2 ротора кольцевой канал 13 для подвода потока охлаждающего воздуха из аппарата 14 закрутки воздуха к тракту воздушного охлаждения лопаток ТВД. Лопатка 3 рабочего колеса ротора ТНД содержит хвостовик 15 и перо 16 с выпукло-вогнутым профилем, образованным выпуклой спинкой 17 и вогнутым корытом 18, сопряженными входной и выходной кромками 19 и 20 соответственно.

В способ охлаждения ротора турбины 1 высокого давления ротор ТВД охлаждают вторичным потоком воздуха из камеры сгорания 21 (КС) газогенератора двигателя, имеющем температуру, более низкую температуры первичного потока рабочего тела из жаровой трубы 22 КС.

Поток воздуха на входе в тракт воздушного охлаждения ротора ТВД подают через совмещенный с указанным трактом входной узел 23 тракта воздушного охлаждения соплового аппарата 24 ТВД. Через входные отверстия в наружной полке 25 соплового аппарата 24 поток воздуха направляют в снабженную открытым на проток дефлектором заднюю полость сопловой лопатки 26 ТВД с пропуском при минимальном нагреве большей части потока воздуха для охлаждения ротора ТВД.

Из полости сопловой лопатки 26 через транзитную полость 27 малой полки 28 соплового блока СА соплового аппарата 24 и выходные патрубки 29 внутреннего кольца 30 СА охлаждающий воздух последовательно подают в две перекрестно ориентированные кольцевые конические полости 31 и 32 узла аппарата 14 закрутки воздуха. Полости 31 и 32 выполняют сопряженными конструктивно и по транзитному потоку воздуха тракта охлаждения ротора ТВД. На выходе из второй полости 32 охлаждающий воздух попадает в аппарат 14 закрутки. Проходя через систему конфузорных каналов - сопел 33 аппарата 14 закрутки охлаждающий воздух поступает в кольцевой канал 13. Далее под действием центробежных сил под напором воздух направляют в систему диффузорных входных каналов 34, выполненных в переходной зоне полотна 5 и в ободе 6 диска 2 рабочего колеса по числу лопаток 3. Из входных каналов 24 воздух поступает в хвостовик 20 лопаток, последовательно проходит участки тракта в елочном замке 35, ножке 36 и полке 37 хвостовика 20, попадая в расположенный в передней части полости лопатки радиально ориентированный раздаточный коллектор 38, образованный передней частью спинки 17 и корыта 18 пера лопатки. В коллекторе 38 охлаждающий воздух трансформируют в два потока фронтальный и тыльный в соотношении (1):(1,42÷1,94).

Фронтальную часть потока направляют через радиально ориентированный ряд отверстий 39 во внутренней разделительной стенке 40 с шагом, превышающим диаметры отверстий не менее чем в 4,2 раза, тангенциальными струями подают во фронтальный канал 41 циклонного охлаждения, параллельно расположенный с коллектором 38 и вписанный частью периметра во входную кромку 19 пера лопатки. В канале 41 настильными струями охлаждают изнутри входную кромку 19 и через другой ряд отверстий 42, выведенных в переднюю часть спинки 17 пера лопатки с шагом, превышающем диаметры отверстий не менее чем в 2,15 раза и с осями, отклоненными по потоку рабочего тела, охлаждающий воздух выводят из полости и выполняют настильное охлаждение снаружи спинки 17 пера лопатки.

Тыльная большая часть потока охлаждающего воздуха из раздаточного коллектора 38 поступает во внутреннюю вихревую матрицу 43, примыкающую к коллектору 38, и охлаждает заднюю часть пера лопатки посредством встречно наклоненных ребер 44 и 45 двух полуматриц. Ребра 44 и 45 выполнены на внутренних поверхностях выходной части спинки 17 и корыта 18 пера лопатки, с образованием перекрестной решетки с углом ϕр.м., между осями каналов, определенным в диапазоне значений ϕр.м.=(1,12÷1,48) [рад]. Из матрицы 43 охлаждающий воздух преодолевает на выходе из полости лопатки турбулизатор 46. Турбулизатор 46 образован не менее чем одним параллельным выходной кромке 20 пера рядом направляющих ребер 47, пространственно отклоненных от оси двигателя для увеличения отбора избыточной Теплоты, и через щель 48 в выходной кромке 20 пера отработанный воздух выходит в поток рабочего тела проточной части турбины. Ребра 45 полуматрицы корыта 19 выполняют с восхождением к выходу из матрицы 43 оси каналов образующей относительно базовой плоскости в проекции на условную осевую плоскость, совмещенную с радиальной осью лопатки, на угол αр.к.л., определенный в диапазоне значений αр.к.л.=(0,66÷0,95) [рад]. В ответной полуматрице в спинке 18 пера 16 лопатки ребра 44 в проекции на ту же осевую плоскость, совмещенную с осью лопатки, наклонены на угол αр.с.л., определенный в диапазоне значений αр.с.л.=(0,84÷1,26) [рад] и выполнены с нисходящим к выходу из матрицы направлением.

В процессе работы ГТД теплонапряженные элементы ротора ТВД охлаждают описанным выше способом.

Лопатка ротора ТВД газотурбинного двигателя выполнена полой, охлаждаемой. При этом в процессе работы ГТД лопатку ротора ТВД охлаждают описанным выше способом.

Узел аппарата 14 закрутки воздуха тракта воздушного охлаждения ротора ТВД включает две последовательно перекрестно ориентированные кольцевые конические полости 31 и 32, аппарат 14 закрутки воздуха с системой конфузорных цилиндроконических сопел 33 и кольцевой канал 19 для подвода к входным каналам 34 тракта охлаждения лопаток потока охлаждающего воздуха через конфузорные сопла 33 аппарата закрутки, выполненные с угловой частотой γс.а.з., определенной в диапазоне значений γс.а.з.=(4,62÷7,17) [ед/рад].

Сопла 33 аппарата закрутки отклонены в направлении к выходу из двигателя и в сторону вращения рабочего колеса ТВД. Сопла отклонены от оси двигателя в тыльную сторону по направлению потока рабочего тела в проекции на условную осевую плоскость двигателя, проведенную через двойную точку пересечения оси канала указанной плоскостью и касательной к окружности центров выходного контура каналов на угол ξ1к.а.з., определенный в диапазоне значений ξ1к.а.з.=(0,44÷0,62) [рад]. Ось канала сопла отклонена в сторону вращения диска ТВД на угол ξ2к.а.з., образующий в проекции на плоскость, нормальную к оси двигателя, считая от вертикальной плоскости симметрии двигателя, определенный в диапазоне значений ξ2к.а.з.=(0,15÷0,21) [рад]. При этом конфузорные сопла 33 аппарата 14 закрутки выполнены с диаметром на входе, превышающим диаметр на выходе не менее чем на 22,5%.

На выходе потока воздуха кольцевой канал аппарата закрутки сообщен с системой входных каналов 34 тракта воздушного охлаждения лопаток, расположенных с частотой лопаток ротора непосредственно под замком 35 каждой лопатки с диффузорным вводом воздуха в полость замка 35 и через участок тракта, пересекающий внутри хвостовика ножку 36 и полку 37 лопатки, во внутреннюю полость пера лопатки.

Коническая полость 31 узла аппарата 14 закрутки воздуха ограждена двумя установленными соосно, полифункциональными усеченными коническими оболочками 49 и 50, имеющими общую кольцевую вершину. Конические оболочки 49 и 50 выполненными с разным наклоном образующих и величинами периметров раструбных торцов, разнесенных в осевом направлении двигателя с интервалом, достаточным для равнорадиусного опорного сопряжения с внутренним кольцом 30 СА ТВД. Внутренняя оболочка 50 с меньшим раструбом снабжена системой пропускных отверстий 51 транзитного тракта охлаждения ротора ТВД. Коническая полость 32 ограждена другой парой конических кольцевых оболочек 52 и 53, перекрестно сопряженно смонтирована на внутренней оболочке 50 первой пары с охватом кольцевого ряда пропускных отверстий 51 тракта. В зоне схождения к вершине непосредственно под свободным торцом 54 напорного диска 11 коническая полость 32 выполнена примыкающей к аппарату 14 закрутки.

Таким образом, за счет проработанности узла аппарата закрутки подаваемого на охлаждение ротора ТВД воздуха, снабженного цилиндроническими сопла с заявленными количеством сопел и параметрами их конфузорности и пространственных углов наклона в аппарате, достигают повышение эффективности охлаждения ротора. Выход за пределы интервала в большую или меньшую сторону приводит к неоправданному снижению эффективности работы аппарата закрутки за счет снижения подачи охлаждаемого воздуха в лопатки при резком росте аэродинамического сопротивления воздуха, подаваемого ко входу в каналы тракта охлаждения лопаток. Технический результат достигают также за счет разделения потока охлаждающего воздуха в раздаточном коллекторе полости лопатки на два части, первую из которых подают в циклонный канал охлаждения входной кромки, где настильными струями охлаждают изнутри входную кромку с последующим вывода воздуха из полости лопатки через отверстий в спинке пера, осуществляя настильное охлаждение снаружи спинки пера лопатки. Вторая большая часть потока воздуха из раздаточного коллектора поступает во внутреннюю вихревую матрицу, выполненную из встречно наклоненных ребер двух полуматриц, выполненных на спинки и корыте пера лопатки, с образованием перекрестной решетки с наклоном ребер матрицы в заявленном диапазоне. Выход за пределы интервала наклона ребер матрицы в большую или меньшую сторону приводит к резкому снижению эффективности охлаждения лопатки, либо к увеличению необходимого расхода воздуха. Охлаждая заднюю часть пера лопатки воздух поступает в дополнительный турбулизатор и через щель в выходной кромке пера отработанный воздух выходит в поток рабочего тела проточной части турбины, чем достигают расширения температурного диапазона эксплуатации лопаток и повышения эффективности охлаждения ротора ТВД в процессе работы двигателя.

Охлаждают ротор ТВД газотурбинного двигателя следующим образом. В процессе работы ГТД охлаждающий воздух поступает из камеры сгорания 21 газогенератора двигателя. Поток воздуха на входе в тракт воздушного охлаждения ротора ТВД подают через входной узел 23 тракта воздушного охлаждения соплового аппарата 24 ТВД и направляют в заднюю полость сопловой лопатки 26 ТВД с пропуском при минимальном нагреве большей части потока воздуха для охлаждения ротора ТВД. Из полости сопловой лопатки 26 через транзитную полость 27 и выходные патрубки 29 внутреннего кольца 30 СА охлаждающий воздух последовательно подают в две конические полости 31 и 32. На выходе из второй полости 32 охлаждающий воздух попадает в аппарат 14 закрутки. Проходя через систему сопел 33 аппарата 14 закрутки охлаждающий воздух поступает в кольцевой канал 13. Далее под действием центробежных сил под напором воздух направляют в систему диффузорных входных каналов 34, из которых поступает в хвостовик 20 лопаток, последовательно проходит участки тракта в елочном замке 35, ножке 36 и полке 37 хвостовика 20, попадая в раздаточный коллектор 38. В коллекторе 38 фронтальную часть потока охлаждающий воздух направляют через ряд отверстий 39 в разделительной стенке 40 и тангенциальными струями подают во фронтальный канал 41 циклонного охлаждения входной кромки 19 пера лопатки. В канале 41 настильными струями охлаждают изнутри входную кромку 19 и через другой ряд отверстий 42 в спинке 17 пера лопатки воздух выводят из полости и выполняют настильное охлаждение снаружи спинки 17 пера лопатки. Тыльная большая часть потока охлаждающего воздуха из раздаточного коллектора 38 поступает во внутреннюю вихревую матрицу 43, охлаждая заднюю часть пера лопатки. Из матрицы 43 охлаждающий воздух преодолевает на выходе из полости лопатки турбулизатор 46 и через щель 48 в выходной кромке 20 пера отработанный воздух выходит в поток рабочего тела проточной части турбины.

Таким образом, за счет улучшения конструктивных и аэродинамических параметров элементов ротора ТВД достигают повышение эффективности охлаждения теплонапряженных элементов ТВД, надежности и ресурса ТВД и двигателя в целом, используемого в составе ГТУ ГПА, в том числе на компрессорных станциях нефтегазовой и энергетической промышленности.


Способ охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД), ротор ТВД и лопатка ротора ТВД, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора ТВД
Способ охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД), ротор ТВД и лопатка ротора ТВД, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора ТВД
Источник поступления информации: Роспатент

Показаны записи 101-110 из 110.
29.04.2020
№220.018.1a52

Устройство защиты от загрязнения оптических датчиков в узлах воздушно-реактивных двигателей

Изобретение относится к системам защиты от загрязнения продуктами сгорания входных окон оптических датчиков, устанавливаемых, в частности, в узлах турбины или камер сгорания газотурбинных или иных воздушно-реактивных двигателей. Устройство защиты от загрязнения оптических датчиков в узлах...
Тип: Изобретение
Номер охранного документа: 0002720186
Дата охранного документа: 27.04.2020
01.05.2020
№220.018.1aae

Устройство для установки датчика на гладкой опорной поверхности

Изобретение относится к устройствам для крепления предметов к гладким опорным поверхностям. Сущность: устройство содержит жесткий корпус (3), выполненный в виде перевернутого стакана с цельным донышком (7). В основании жесткого корпуса (3) выполнена концентрическая торцевая канавка (8), в...
Тип: Изобретение
Номер охранного документа: 0002720266
Дата охранного документа: 28.04.2020
24.06.2020
№220.018.29bd

Приводной центробежный суфлер газотурбинного двигателя

Изобретение относится к области машиностроения, касается элементов систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора, воздухоотделителя в маслосистемах авиационных газотурбинных двигателей. Приводной центробежный суфлер газотурбинного двигателя содержит...
Тип: Изобретение
Номер охранного документа: 0002724059
Дата охранного документа: 19.06.2020
24.06.2020
№220.018.2a3d

Способ упрочнения элементов турбомашины металломатричным композитом и установка для его осуществления

Изобретение относится к способам получения металлических композиционных материалов на основе интерметаллида титана, армированных высокомодульными волокнами, применяемых в авиационной технике, в частности, для упрочнения элементов газотурбинных двигателей, а также относится к установкам для...
Тип: Изобретение
Номер охранного документа: 0002724226
Дата охранного документа: 22.06.2020
04.07.2020
№220.018.2e7b

Способ восстановления и упрочнения антивибрационных полок титановых лопаток компрессора гтд

Изобретение относится к способу восстановления и упрочнения антивибрационных полок титановых лопаток компрессора ГТД и может быть использовано в отрасли авиастроения для ремонта и упрочения как бывших в эксплуатации, так и новых титановых лопаток компрессора ГТД. Методом лазерной наплавки...
Тип: Изобретение
Номер охранного документа: 0002725469
Дата охранного документа: 02.07.2020
21.05.2023
№223.018.6946

Компенсатор относительных перемещений внутреннего и наружного корпусов турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции компенсаторов относительных перемещений внутреннего и наружного корпусов турбомашин, в частности компенсаторов, применяемых в качестве корпуса для измерительной аппаратуры, служащей для замера различных параметров...
Тип: Изобретение
Номер охранного документа: 0002794949
Дата охранного документа: 26.04.2023
21.05.2023
№223.018.6948

Компенсатор относительных перемещений внутреннего и наружного корпусов турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции компенсаторов относительных перемещений внутреннего и наружного корпусов турбомашин, в частности компенсаторов, применяемых в качестве корпуса для измерительной аппаратуры, служащей для замера различных параметров...
Тип: Изобретение
Номер охранного документа: 0002794949
Дата охранного документа: 26.04.2023
03.06.2023
№223.018.7671

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области эксплуатации и диагностики авиационных газотурбинных двигателей. Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию включает определение накопленной повреждаемости каждой основной детали двигателя с учетом режимов работы...
Тип: Изобретение
Номер охранного документа: 0002796563
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7c41

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации. Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей...
Тип: Изобретение
Номер охранного документа: 0002742321
Дата охранного документа: 04.02.2021
16.06.2023
№223.018.7d0c

Рабочее колесо ротора компрессора газотурбинного двигателя

Изобретение относится к энергомашиностроению. Рабочее колесо ротора компрессора газотурбинного двигателя содержит диск, на наружной поверхности которого выполнен кольцевой паз, в котором установлены хвостовики типа «ласточкин хвост» лопаток с полками, зафиксированные в окружном направлении...
Тип: Изобретение
Номер охранного документа: 0002741685
Дата охранного документа: 28.01.2021
Показаны записи 121-130 из 397.
10.07.2015
№216.013.5f4b

Способ капитального ремонта газотурбинного двигателя (варианты) и газотурбинный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы газотурбинных двигателей и газотурбинный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя (ГТД), при котором создают ротационно обновляемый запас восстановленных деталей: модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555936
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4c

Способ капитального ремонта газотурбинного двигателя (варианты) и газотурбинный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии пополняемой группы газотурбинных двигателей и газотурбинный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555937
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4d

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми. Помодульно собирают двигатель, который...
Тип: Изобретение
Номер охранного документа: 0002555938
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4e

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель (ТРД), выполненный двухконтурным, двухвальным, содержит не менее восьми модулей, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины...
Тип: Изобретение
Номер охранного документа: 0002555939
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4f

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555940
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f50

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания,...
Тип: Изобретение
Номер охранного документа: 0002555941
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f51

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства турбореактивного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя, собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555942
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f53

Способ капитального ремонта турбореактивного двигателя и турбореактивный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы турбореактивных двигателей и турбореактивный двигатель, отремонтированный этим способом (варианты)

Изобретение относится к энергетике. Способ капитального ремонта авиационных турбореактивных двигателей, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и...
Тип: Изобретение
Номер охранного документа: 0002555944
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f59

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, а также содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания,...
Тип: Изобретение
Номер охранного документа: 0002555950
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5fc5

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства турбореактивного двигателя (ТРД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми. Помодульно собирают двигатель, который...
Тип: Изобретение
Номер охранного документа: 0002556058
Дата охранного документа: 10.07.2015
+ добавить свой РИД