×
01.04.2019
219.016.fa3d

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу формирования функционально-градиентного покрытия селективной лазерной наплавкой. В фокус лазерного излучения подают порошковый материал по крайней мере из двух автономно работающих дозаторов, в одном из которых находится порошок с низкой микротвердостью (менее HRC30) и высоким коэффициентом термического расширения (КТР) (более 9*10 К), а в другом - с высокой микротвердостью (более HRC70) и низким КТР (менее 6*10 К). В начале процесса включают дозатор с пластичным порошковым материалом с высоким КТР и сканированным лазерным лучом производят наплавку высокоадгезивного слоя по всей обрабатываемой поверхности, затем включают дозатор с порошковым материалом с высокой микротвердостью и низким КТР так, чтобы при одновременной работе дозаторов в фокусе лазерного излучения происходило смешивание порошков пластичного материала с материалом с высокой микротвердостью с постепенным увеличением объемной доли высокотвердого порошка от 0 до 80% и уменьшением объемной доли пластичного порошка со 100 до 20% по мере наплавления каждого последующего слоя. В качестве пластичного материала для создания высокоадгезионного слоя используют стали или сплавы на основе Ni, Cr, Со, Ti и др., а в качестве упрочняющей компоненты - нитриды, карбиды, оксиды, бориды или их комбинации. Фракционный состав порошковых материалов составляет в среднем 60-160 мкм. В результате получают покрытия с повышенной адгезионной и когезионной прочностью, износостойкостью, что способствует увеличению срока службы деталей и изделий. 2 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к технологии получения функционально-градиентных покрытий методами селективной лазерной наплавки, в том числе износостойких покрытий со ступенчато регулируемой высокой микротвердостью для повышения срока эксплуатации изделий судового машиностроения, работающих в экстремальных условиях.

Повышение микротвердости, а соответственно срока службы покрытий в постоянно ужесточающихся механических и температурных условиях эксплуатации, требует разработки новых материалов и способов нанесения функциональных покрытий на их основе. Эти способы должны обеспечить высокую адгезионную прочность к подложке (поверхности изделия) и когезионную прочность самого защитного покрытия. Использование для формирования защитных покрытий только неметаллических порошков с высокой микротвердостью (например, нитридов, карбидов, оксидов, боридов) из-за значительной разности коэффициентов термического расширения (КТР) не обеспечивает прочного адгезионного сцепления с металлической подложкой, и, соответственно, не удается получить сплошного слоя. Когезионная прочность многослойной наплавки, в свою очередь, определяется оптимальным сочетанием прочностных и пластичных свойств нанесенного покрытия. Оптимальным решением является создание многослойных покрытий, каждый из слоев в котором, как правило, раздельно выполняет функции упрочняющей компоненты и пластификатора. При этом неизбежно появляются гетерофазные границы раздела фаз между слоями, материалы в которых имеют существенно различные КТР. При повышенных нагрузках и температурах из-за разности КТР между соседними слоями может происходить, как показывает практика, расслоение покрытий или появление разрушающих покрытие трещин. Это явление характерно для всех многослойных покрытий, где разность КТР между соседними слоями превышает 20% (так называемые несогласованные спаи), в том числе и для известных аналогов RU 2359797 С2, RU 2297310 С2, RU 2416673 С2, RU 2228243 С2, в которых описываются способы получения многослойных покрытий и наплавок с использованием лазерного луча.

Особенностью предлагаемого в них технического решения является то, что с помощью лазерного луча создается двухслойная лазерная наплавка, состоящая из металлического «мягкого» подслоя, нанесенного на металлическую деталь и «твердого» переферийного слоя, состоящего из смеси металлического матричного порошка с неметаллическими матричными порошками карбидов, боридов или нитридов. Причем соотношение этих компонентов в смеси составляет (3-4): 1. Существенное различие в химических составах указанных исходных компонентов естественно приводит к существенной разности КТР «твердой» и «мягкой» компонентов. Разница может доходить до 3-4 раз. При этом неизбежно возникновение так называемых «коэффициентных напряжений», приводящих, как показывает практика, к сколам или отслаиваниям покрытия, особенно при повышенных температурах.

Для получения так называемых «согласованных спаев» необходимо, чтобы разность КТР между соседними слоями не превышала 20%. Поэтому очевидно, что «согласование» разности КТР может быть достигнуто за счет создания многослойных композиций. Для этого производятся расчеты для каждой конкретной комбинации, показывающие, какое количество ступенчатых слоев необходимо нанести (наплавить) для получения согласованных спаев.

Получение таких многослойных ступенчатых композиций, исключающих возникновение остаточных «коэффициентных» напряжений, является оптимальным научно-технологическим решением.

Известен прием подачи порошковых материалов в фокус лазерного излучения при лазерной обработке металлического материала (А.Г. Григорьянц и др. «Технологические процессы лазерной обработки», издательство МГТУ им. Н.Э. Баумана, М, 2006 г. ). Также известны несколько способов получения функционально-градиентных покрытий методом холодного газодинамического напыления (ХГДН) с подачей порошковых материалов, имеющих различные физические характеристики, из двух или более одновременно работающих дозаторов. При этом достигается высокая адгезионная и когезионная прочность покрытий (например, RU 2285746C2, С23С 24/04, 20.10.2006 г., RU 2354749C2, С23С 24/04, 10.05.2009 г. ). Следует особо отметить, что ни в одном из известных технических решений не учитывается необходимость ограничений соотношения между КТР соседних слоев (20%) по всей площади защищаемой поверхности, что, в конечном счете, является определяющим для сохранения высоких прочностных характеристик и сплошности покрытия в ходе эксплуатации. Этот механизм получения «согласованных спаев» в процессе лазерной наплавки и является предметом настоящего изобретения.

В качестве прототипа выбран патент RU 2297310 (В23К 26/00), опубликованный 20.04.2007 г., в соответствии с которым осуществляется послойное нанесение металлического порошка. Первым наносят пластичный подслой с твердостью менее HRC30, и затем - рабочий слой из смеси порошков с твердостью менее HRC30 и более HRC60 в соотношении 1:(3-4) соответственно.

Техническим результатом настоящего изобретения является разработка способа получения функционально-градиентного покрытия, в том числе с высокой интегральной микротвердостью, с помощью селективной лазерной наплавки, обеспечивающего оптимальное сочетание адгезионной и когезионной прочности. За счет получения многослойного ступенчатого наплавленного покрытия, каждый слой которого отличается от соседнего по величине КТР не более, чем на 20%, причем за счет сканирования обеспечивается равномерная лазерная наплавка по всей защищаемой поверхности образца (изделия) с сохранением одинакового химического состава и соответственно микротвердости.

Технический результат достигается за счет того, что нанесение сплошного (градиентного) покрытия с помощью селективной лазерной наплавки производят следующим образом. Порошки со средним размером частиц 60-160 мкм с различной микротвердостью и различными коэффициентами термического расширения (КТР) помещают в два дозатора. При этом в первый дозатор помещают пластичные порошки с низкой микротвердостью (менее HRC30) и высоким значением КТР (более 9*10-6 К-1) -чаще всего металлические сплавы того же состава, что и основной металл подложки, хотя не исключено использование материалов и другого состава (стали, в том числе нержавеющие, сплавы Ti, Со, Cr, Ni). Во второй дозатор помещают неметаллические материалы с повышенной микротвердостью (более HRC70) и низким значением КТР (менее 6*10-6 К-1) (карбиды, нитриды, оксиды, бориды и т.п.). Затем в защитной атмосфере аргона происходит облучение поверхности обрабатываемой детали лучом лазера с одновременным включением подачи порошкового материала таким образом, что в начале включается первый дозатор с пластичным материалом, затем подключается второй дозатор по заранее установленной программе. Результатом смешивания компонентов по заданной программе является достижение минимальной разности КТР между слоями не более 20%. В начале на обрабатываемую поверхность наносят адгезионный монослой из порошка с низкой микротвердостью и КТР равным или близким к основному материалу подложки, толщиной соответствующей исходной фракции порошка. Формирование требуемого состава порошковой смеси в соответствии с программой происходит непосредственно в фокусе самого лазерного луча и в таком виде фиксируется на подложке в виде двойного сканированного слоя. После нанесения каждого следующего слоя автоматически с помощью управления процессом по компьютерной программе увеличивается расход неметаллической твердой компоненты из расчета изменения КТР не более, чем на 20%. Химический состав многослойной композиции изменяется по заданной схеме ступенчато, увеличивая содержание порошка с высокой микротвердостью на каждой ступени на 20%. Что в свою очередь приводит к изменению по такому же ступенчатому закону КТР по толщине покрытия. По мере увеличения в покрытии объемной доли порошка с высокой микротвердостью производят увеличение мощности лазерного излучения. Благодаря этому достигаются не только высокие функциональные свойства поверхности покрытия, но и прочные адгезионные и когезионные характеристики по его толщине.

Способ осуществляется следующим образом (фиг. 1):

В дозатор 1 помещают металлический порошок (в зависимости от подложки, порошки сталей и сплавов на основе Ti, Ni, Со, Cr и т.п.) сферической формы микротвердостью менее HRC30 с оптимальным для обеспечения конструкционной прочности и пластичности покрытия фракционным составом 60 - 160 мкм и КТР близким к КТР подложки.

В дозатор 2 помещают порошок из материала с высокой (более HRC70) микротвердостью (например, карбиды, нитриды, оксиды, бориды) и низким КТР фракции 60 - 160 мкм, который при формировании функционально-градиентного покрытия перемешивается с более пластичным порошком и обеспечивает тем самым создание функционально-градиентного покрытия с высокой адгезионной и когезионной прочностью и микротвердостью.

Вначале включают дозатор 1 одновременно с лазером 3 и порошок из дозатора 1 подают в фокус лазерного излучения 6. При этом на подложку 4 наплавляется монослой из пластичного порошка с высоким КТР, обеспечивая тем самым высокую адгезию к подложке. Затем при включенном дозаторе 1 включают дозатор 2. Далее оператор, за счет программного регулирования подач порошка из обоих дозаторов, обеспечивает уменьшение расхода пластичной компоненты (дозатор 1) и соответствующее увеличение расхода материала с высокой микротвердостью и низким КТР (дозатор 2). Процесс происходит в защитной среде аргона. Соответствующие расчеты и практика показывают, что оптимально количество слоев должно быть не менее пяти. Таким образом, обеспечивается оптимальное сочетание высокой адгезионной и когезионной прочности покрытия, а также высокой микротвердости. В результате чего существенно возрастает стойкость такого покрытия к износу.

Пример 1.

Нанесение покрытий производилось на базе ФГУП «ЦНИИ КМ «Прометей» с использованием установки селективной лазерной наплавки LENS 750. Расход порошка, поступающего в зону формирования покрытий, регулируется с помощью специальной компьютерной программы. В качестве исходных материалов используются: распыленный порошок нержавеющей стали 316 (дозатор 1, фиг. 1) средней фракции 80 мкм и средним КТР 12*10-6 К-1, и порошок Al2O3 (дозатор 2, фиг. 1) фракции 60-125 мкм с твердостью HRC>75 и средним КТР 5*10-6 К-1. Подложка - лист толщиной 4 мм из стали 40. Дозатор 1 включают одновременно с включением лазерной установки и производят сканированное нанесение сплошное адгезионного монослоя 3 толщиной 80 мкм по всей поверхности образца (фиг. 2). Прочность адгезии, определенная с помощью штифтового метода, составляет 30 МПа. Затем производится включение дозатора 2 (фиг. 1) и задается программа работы дозаторов в соответствии с заданным графиком (фиг. 2), обеспечивая требуемое изменение состава за счет увеличения компоненты с высокой микротвердостью (1, фиг. 2) в пластичной матрице(2, фиг. 2). Таким образом за наплавленным слоем с высокой адгезионной прочностью к подложке (3, фиг. 2), следует несколько сплошных слоев с увеличением твердой составляющей на 20% на каждом шаге с целью исключения рисков снижения когезионной прочности между наплавляемыми слоями. Заключительный - поверхностный слой (4, фиг. 2) содержит 80% высокотвердой составляющей и обеспечивает высокую микротвердость и износостойкость покрытия.

Одновременно с увеличением подаваемой объемной доли порошка Al2O3 в зону фокуса лазерного луча, производится увеличение мощности лазерного излучения с 280 до 350 Вт, т.к. Al2O3 имеет более высокую температуру плавления, чем сталь 316. Результатом является получение сплошного практически беспористого покрытия, обладающего высокой износостойкостью. Микротвердость поверхностного слоя, измеренная на приборе ПМТ3 по базовой стандартной методике, составляет HRC58-60.

Пример 2.

Нанесение покрытий производится на базе ФГУП «ЦНИИ КМ «Прометей» с использованием установки селективной лазерной наплавки LENS 750. В качестве исходных материалов используют: порошок жаропрочного сплава Х20Н80 (дозатор 1, фиг. 1) со средним размером фракции 100 мкм и средним КТР 18*10-6 К-1, и высокотвердый порошок WC (HRC>70), средним КТР 5,8*10-6 К-1 (дозатор 2, фиг. 1) со средним размером фракции 100 мкм. Подложка - лист толщиной 4 мм из стали 40. Дозатор 1 включают одновременно с включением лазерной установки и производят нанесение адгезионного монослоя толщиной 100 мкм. Прочность адгезии, определенная с помощью штифтового метода, составляет 40 МПа. Затем производится включение дозатора 2 и производится послойная наплавка функционально-градиентного покрытия по схеме на фиг. 2. Таким образом за наплавленным слоем с высокой адгезионной прочностью к подложке (3, фиг. 2), следует несколько сплошных слоев с увеличением твердой составляющей на 20% на каждом шаге с гетерофазными границами с целью исключения рисков снижения когезионной прочности между наплавляемыми слоями. Заключительный - поверхностный слой (4, фиг. 2) содержит 80% высокотвердой составляющей и обеспечивает высокую микротвердость и износостойкость покрытия. Мощность лазерного излучения повышается от 280 до 400 Вт. Микротвердость поверхностного слоя, измеренная на приборе ПМТ3 по базовой стандартной методике, составляет HRC55-60.

Изобретение позволяет наносить функционально-градиентные покрытия, в которых химический состав сохраняется в пределах одного сплошного слоя и изменяется ступенчато по заранее заданной схеме (фиг. 2). При этом количество порошка твердой фазы изменяется от 0 до 80% (2, фиг. 2), а пластичной от 100 до 20% (1, фиг. 2) соответственно с шагом 20% на каждый наплавляемый слой. Это приводит к постепенному изменению КТР по толщине покрытия и исключает возникновение остаточных коэффициентных термических напряжений, обеспечивая тем самым высокую адгезионную и когезионную прочность покрытий и, как результат, высокотвердой поверхностный слой, обеспечивающий высокую износостойкость покрытия в условиях жестких механических и термических воздействий.


СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ
СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 251.
27.06.2013
№216.012.50c9

Способ изготовления листов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов систем Al-Mg-Si и Al-Zn-Mg, используемых в качестве конструкционных и обшивочных листов в авиакосмической технике, судостроении и транспортном машиностроении, в том числе и в сварных конструкциях. Способ...
Тип: Изобретение
Номер охранного документа: 0002486274
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51f9

Способ построения системы сообщений многоуровневой несимметричной транспортной системы

Изобретение относится к системам автоматизации, основанным на использовании вычислительных машин. Техническим результатом является территориальная независимость АРМ при неограниченном расширении системы через свои повторяющие структуры с построением иерархической транспортной системы за счет...
Тип: Изобретение
Номер охранного документа: 0002486578
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.5390

Способ получения композиционного катода

Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в отраслях машиностроения, микроэлектроники,...
Тип: Изобретение
Номер охранного документа: 0002486995
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.544b

Способ электрошлакового переплава

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. В способе используют по меньшей мере две затравки, которые выполняют в виде цилиндра или параллелепипеда, изолируют от корпуса кристаллизатора и размещают...
Тип: Изобретение
Номер охранного документа: 0002487182
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5538

Система комплексной обработки информации радионавигационных и автономных средств навигации для определения действительных значений параметров самолетовождения

Изобретение относится к системам навигации летательных аппаратов (ЛА), а именно к обработке информации в навигационно-пилотажных комплексах. На борту ЛА расположены: инерциальная навигационная система (ИНС), радионавигационный корректор - спутниковая навигационная система (СНС) и автономный...
Тип: Изобретение
Номер охранного документа: 0002487419
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.574f

Двухслойный стальной прокат

Изобретение относится к области металлургии и может быть использовано при изготовлении сварных конструкций из двухслойного проката, длительно эксплуатирующихся при отрицательных температурах в условиях интенсивного механического, коррозионно-эрозионного воздействия мощных ледовых полей и...
Тип: Изобретение
Номер охранного документа: 0002487959
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59a0

Сырьевая смесь для изготовления огнестойкого конструкционного материала

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, атомной промышленности для защиты от пожара служебных и жилых помещений в составе огнестойких конструкций, а также в качестве среднего слоя панелей, облицованных декоративно-отделочными...
Тип: Изобретение
Номер охранного документа: 0002488565
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5c89

Движительно-рулевая колонка

Изобретение относится к судостроению и может быть использовано при создании судовых движительно-рулевых комплексов. Движительно-рулевая колонка содержит баллер, гондолу, гребной винт и механизм поворота колонки. Баллер в верхней части соединен с корпусом через опорный шар, а в нижней части -...
Тип: Изобретение
Номер охранного документа: 0002489310
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f87

Способ изготовления крепежных элементов из высокопрочных титановых сплавов

Изобретение относится к области металлургии и может быть использовано при изготовлении стержневых деталей с головками из титановых сплавов. Заготовки подвергают термообработке, после чего производят горячую высадку головок крепежных элементов. После механообработки заготовок с головками...
Тип: Изобретение
Номер охранного документа: 0002490087
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.60a4

Способ получения градиентного каталитического покрытия

Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его...
Тип: Изобретение
Номер охранного документа: 0002490372
Дата охранного документа: 20.08.2013
Показаны записи 31-40 из 43.
08.04.2019
№219.016.fed8

Способ получения композиционного порошкового материала системы металл - керамика износостойкого класса

Изобретение относится к порошковой металлургии, в частности к получению композиционных порошковых материалов с металлической матрицей, армированной тугоплавкими наполнителями методом сверхскоростного механосинтеза. Может использоваться для получения защитных износостойких покрытий с заданными...
Тип: Изобретение
Номер охранного документа: 0002460815
Дата охранного документа: 10.09.2012
08.04.2019
№219.016.fed9

Способ получения композиционного порошкового магнитного материала системы "ферромагнетик-диамагнетик"

Изобретение относится к порошковой металлургии, а именно к получению ферритовых магнитных порошков. Может использоваться для изготовления композиционных радиопоглощающих материалов и покрытий в диапазоне сверхвысоких частот (СВЧ). Композиционные частицы порошкового материала системы...
Тип: Изобретение
Номер охранного документа: 0002460817
Дата охранного документа: 10.09.2012
29.04.2019
№219.017.41af

Способ получения наноструктурированных функционально-градиентных износостойких покрытий

Предлагаемый способ относится к области получения покрытий и создания наноструктурированных материалов с функционально-градиентными свойствами. Способ включает подачу порошковой композиции, по крайней мере, из двух дозаторов в сверхзвуковой поток подогретого газа и нанесение порошковой...
Тип: Изобретение
Номер охранного документа: 0002354749
Дата охранного документа: 10.05.2009
29.04.2019
№219.017.43bc

Дезинтегратор

Изобретение относится к устройствам для тонкого измельчения, смешивания и механической активации материалов, в том числе с наноструктурой, и может быть использовано в различных отраслях промышленности, где применяется дезинтеграторная технология. Дезинтегратор включает два расположенных...
Тип: Изобретение
Номер охранного документа: 0002426593
Дата охранного документа: 20.08.2011
09.06.2019
№219.017.79a8

Суспензия для получения покрытия

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. Технический результат изобретения заключается в разработке состава суспензии для получения покрытий для снятия статических электрических зарядов, работающего в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002399595
Дата охранного документа: 20.09.2010
02.08.2019
№219.017.bba9

Способ получения биметаллических изделий штамповкой жидкого металла

Изобретение относится к литейному производству и может быть использовано для изготовления биметаллических заготовок методом штамповки жидкого металла. Жидкий металл основы заливают в матрицу установки штамповки жидкого металла. Затем в жидкий металл, находящийся в матрице, погружают рабочий...
Тип: Изобретение
Номер охранного документа: 0002696164
Дата охранного документа: 31.07.2019
02.10.2019
№219.017.cb6d

Способ получения покрытий с интерметаллидной структурой

Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой. Осуществляют послойное нанесение...
Тип: Изобретение
Номер охранного документа: 0002701612
Дата охранного документа: 30.09.2019
22.12.2019
№219.017.f0a6

Способ получения функционального покрытия на основе алюминий-углеродных нановолокон

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности. Способ получения композиционного...
Тип: Изобретение
Номер охранного документа: 0002709688
Дата охранного документа: 19.12.2019
12.04.2023
№223.018.4468

Способ получения конструкционного керамического материала на основе карбида кремния для изделий сложной геометрии

Изобретение относится к области создания конструкционных керамических материалов на основе карбида кремния для изготовления изделий сложной геометрической формы, обладающих высокой стойкостью к износу и твердостью. Изобретение может быть использовано в машиностроении, морской и авиационной...
Тип: Изобретение
Номер охранного документа: 0002739774
Дата охранного документа: 28.12.2020
21.04.2023
№223.018.4f84

Способ изготовления спеченных трубчатых изделий с буртом из порошка

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении спеченных трубчатых изделий с буртом из порошка. Осуществляют формование изделия в два этапа и спекание. На первом этапе формования из порошка прессуют предварительную профилированную заготовку в...
Тип: Изобретение
Номер охранного документа: 0002792957
Дата охранного документа: 28.03.2023
+ добавить свой РИД