×
01.04.2019
219.016.fa3d

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу формирования функционально-градиентного покрытия селективной лазерной наплавкой. В фокус лазерного излучения подают порошковый материал по крайней мере из двух автономно работающих дозаторов, в одном из которых находится порошок с низкой микротвердостью (менее HRC30) и высоким коэффициентом термического расширения (КТР) (более 9*10 К), а в другом - с высокой микротвердостью (более HRC70) и низким КТР (менее 6*10 К). В начале процесса включают дозатор с пластичным порошковым материалом с высоким КТР и сканированным лазерным лучом производят наплавку высокоадгезивного слоя по всей обрабатываемой поверхности, затем включают дозатор с порошковым материалом с высокой микротвердостью и низким КТР так, чтобы при одновременной работе дозаторов в фокусе лазерного излучения происходило смешивание порошков пластичного материала с материалом с высокой микротвердостью с постепенным увеличением объемной доли высокотвердого порошка от 0 до 80% и уменьшением объемной доли пластичного порошка со 100 до 20% по мере наплавления каждого последующего слоя. В качестве пластичного материала для создания высокоадгезионного слоя используют стали или сплавы на основе Ni, Cr, Со, Ti и др., а в качестве упрочняющей компоненты - нитриды, карбиды, оксиды, бориды или их комбинации. Фракционный состав порошковых материалов составляет в среднем 60-160 мкм. В результате получают покрытия с повышенной адгезионной и когезионной прочностью, износостойкостью, что способствует увеличению срока службы деталей и изделий. 2 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к технологии получения функционально-градиентных покрытий методами селективной лазерной наплавки, в том числе износостойких покрытий со ступенчато регулируемой высокой микротвердостью для повышения срока эксплуатации изделий судового машиностроения, работающих в экстремальных условиях.

Повышение микротвердости, а соответственно срока службы покрытий в постоянно ужесточающихся механических и температурных условиях эксплуатации, требует разработки новых материалов и способов нанесения функциональных покрытий на их основе. Эти способы должны обеспечить высокую адгезионную прочность к подложке (поверхности изделия) и когезионную прочность самого защитного покрытия. Использование для формирования защитных покрытий только неметаллических порошков с высокой микротвердостью (например, нитридов, карбидов, оксидов, боридов) из-за значительной разности коэффициентов термического расширения (КТР) не обеспечивает прочного адгезионного сцепления с металлической подложкой, и, соответственно, не удается получить сплошного слоя. Когезионная прочность многослойной наплавки, в свою очередь, определяется оптимальным сочетанием прочностных и пластичных свойств нанесенного покрытия. Оптимальным решением является создание многослойных покрытий, каждый из слоев в котором, как правило, раздельно выполняет функции упрочняющей компоненты и пластификатора. При этом неизбежно появляются гетерофазные границы раздела фаз между слоями, материалы в которых имеют существенно различные КТР. При повышенных нагрузках и температурах из-за разности КТР между соседними слоями может происходить, как показывает практика, расслоение покрытий или появление разрушающих покрытие трещин. Это явление характерно для всех многослойных покрытий, где разность КТР между соседними слоями превышает 20% (так называемые несогласованные спаи), в том числе и для известных аналогов RU 2359797 С2, RU 2297310 С2, RU 2416673 С2, RU 2228243 С2, в которых описываются способы получения многослойных покрытий и наплавок с использованием лазерного луча.

Особенностью предлагаемого в них технического решения является то, что с помощью лазерного луча создается двухслойная лазерная наплавка, состоящая из металлического «мягкого» подслоя, нанесенного на металлическую деталь и «твердого» переферийного слоя, состоящего из смеси металлического матричного порошка с неметаллическими матричными порошками карбидов, боридов или нитридов. Причем соотношение этих компонентов в смеси составляет (3-4): 1. Существенное различие в химических составах указанных исходных компонентов естественно приводит к существенной разности КТР «твердой» и «мягкой» компонентов. Разница может доходить до 3-4 раз. При этом неизбежно возникновение так называемых «коэффициентных напряжений», приводящих, как показывает практика, к сколам или отслаиваниям покрытия, особенно при повышенных температурах.

Для получения так называемых «согласованных спаев» необходимо, чтобы разность КТР между соседними слоями не превышала 20%. Поэтому очевидно, что «согласование» разности КТР может быть достигнуто за счет создания многослойных композиций. Для этого производятся расчеты для каждой конкретной комбинации, показывающие, какое количество ступенчатых слоев необходимо нанести (наплавить) для получения согласованных спаев.

Получение таких многослойных ступенчатых композиций, исключающих возникновение остаточных «коэффициентных» напряжений, является оптимальным научно-технологическим решением.

Известен прием подачи порошковых материалов в фокус лазерного излучения при лазерной обработке металлического материала (А.Г. Григорьянц и др. «Технологические процессы лазерной обработки», издательство МГТУ им. Н.Э. Баумана, М, 2006 г. ). Также известны несколько способов получения функционально-градиентных покрытий методом холодного газодинамического напыления (ХГДН) с подачей порошковых материалов, имеющих различные физические характеристики, из двух или более одновременно работающих дозаторов. При этом достигается высокая адгезионная и когезионная прочность покрытий (например, RU 2285746C2, С23С 24/04, 20.10.2006 г., RU 2354749C2, С23С 24/04, 10.05.2009 г. ). Следует особо отметить, что ни в одном из известных технических решений не учитывается необходимость ограничений соотношения между КТР соседних слоев (20%) по всей площади защищаемой поверхности, что, в конечном счете, является определяющим для сохранения высоких прочностных характеристик и сплошности покрытия в ходе эксплуатации. Этот механизм получения «согласованных спаев» в процессе лазерной наплавки и является предметом настоящего изобретения.

В качестве прототипа выбран патент RU 2297310 (В23К 26/00), опубликованный 20.04.2007 г., в соответствии с которым осуществляется послойное нанесение металлического порошка. Первым наносят пластичный подслой с твердостью менее HRC30, и затем - рабочий слой из смеси порошков с твердостью менее HRC30 и более HRC60 в соотношении 1:(3-4) соответственно.

Техническим результатом настоящего изобретения является разработка способа получения функционально-градиентного покрытия, в том числе с высокой интегральной микротвердостью, с помощью селективной лазерной наплавки, обеспечивающего оптимальное сочетание адгезионной и когезионной прочности. За счет получения многослойного ступенчатого наплавленного покрытия, каждый слой которого отличается от соседнего по величине КТР не более, чем на 20%, причем за счет сканирования обеспечивается равномерная лазерная наплавка по всей защищаемой поверхности образца (изделия) с сохранением одинакового химического состава и соответственно микротвердости.

Технический результат достигается за счет того, что нанесение сплошного (градиентного) покрытия с помощью селективной лазерной наплавки производят следующим образом. Порошки со средним размером частиц 60-160 мкм с различной микротвердостью и различными коэффициентами термического расширения (КТР) помещают в два дозатора. При этом в первый дозатор помещают пластичные порошки с низкой микротвердостью (менее HRC30) и высоким значением КТР (более 9*10-6 К-1) -чаще всего металлические сплавы того же состава, что и основной металл подложки, хотя не исключено использование материалов и другого состава (стали, в том числе нержавеющие, сплавы Ti, Со, Cr, Ni). Во второй дозатор помещают неметаллические материалы с повышенной микротвердостью (более HRC70) и низким значением КТР (менее 6*10-6 К-1) (карбиды, нитриды, оксиды, бориды и т.п.). Затем в защитной атмосфере аргона происходит облучение поверхности обрабатываемой детали лучом лазера с одновременным включением подачи порошкового материала таким образом, что в начале включается первый дозатор с пластичным материалом, затем подключается второй дозатор по заранее установленной программе. Результатом смешивания компонентов по заданной программе является достижение минимальной разности КТР между слоями не более 20%. В начале на обрабатываемую поверхность наносят адгезионный монослой из порошка с низкой микротвердостью и КТР равным или близким к основному материалу подложки, толщиной соответствующей исходной фракции порошка. Формирование требуемого состава порошковой смеси в соответствии с программой происходит непосредственно в фокусе самого лазерного луча и в таком виде фиксируется на подложке в виде двойного сканированного слоя. После нанесения каждого следующего слоя автоматически с помощью управления процессом по компьютерной программе увеличивается расход неметаллической твердой компоненты из расчета изменения КТР не более, чем на 20%. Химический состав многослойной композиции изменяется по заданной схеме ступенчато, увеличивая содержание порошка с высокой микротвердостью на каждой ступени на 20%. Что в свою очередь приводит к изменению по такому же ступенчатому закону КТР по толщине покрытия. По мере увеличения в покрытии объемной доли порошка с высокой микротвердостью производят увеличение мощности лазерного излучения. Благодаря этому достигаются не только высокие функциональные свойства поверхности покрытия, но и прочные адгезионные и когезионные характеристики по его толщине.

Способ осуществляется следующим образом (фиг. 1):

В дозатор 1 помещают металлический порошок (в зависимости от подложки, порошки сталей и сплавов на основе Ti, Ni, Со, Cr и т.п.) сферической формы микротвердостью менее HRC30 с оптимальным для обеспечения конструкционной прочности и пластичности покрытия фракционным составом 60 - 160 мкм и КТР близким к КТР подложки.

В дозатор 2 помещают порошок из материала с высокой (более HRC70) микротвердостью (например, карбиды, нитриды, оксиды, бориды) и низким КТР фракции 60 - 160 мкм, который при формировании функционально-градиентного покрытия перемешивается с более пластичным порошком и обеспечивает тем самым создание функционально-градиентного покрытия с высокой адгезионной и когезионной прочностью и микротвердостью.

Вначале включают дозатор 1 одновременно с лазером 3 и порошок из дозатора 1 подают в фокус лазерного излучения 6. При этом на подложку 4 наплавляется монослой из пластичного порошка с высоким КТР, обеспечивая тем самым высокую адгезию к подложке. Затем при включенном дозаторе 1 включают дозатор 2. Далее оператор, за счет программного регулирования подач порошка из обоих дозаторов, обеспечивает уменьшение расхода пластичной компоненты (дозатор 1) и соответствующее увеличение расхода материала с высокой микротвердостью и низким КТР (дозатор 2). Процесс происходит в защитной среде аргона. Соответствующие расчеты и практика показывают, что оптимально количество слоев должно быть не менее пяти. Таким образом, обеспечивается оптимальное сочетание высокой адгезионной и когезионной прочности покрытия, а также высокой микротвердости. В результате чего существенно возрастает стойкость такого покрытия к износу.

Пример 1.

Нанесение покрытий производилось на базе ФГУП «ЦНИИ КМ «Прометей» с использованием установки селективной лазерной наплавки LENS 750. Расход порошка, поступающего в зону формирования покрытий, регулируется с помощью специальной компьютерной программы. В качестве исходных материалов используются: распыленный порошок нержавеющей стали 316 (дозатор 1, фиг. 1) средней фракции 80 мкм и средним КТР 12*10-6 К-1, и порошок Al2O3 (дозатор 2, фиг. 1) фракции 60-125 мкм с твердостью HRC>75 и средним КТР 5*10-6 К-1. Подложка - лист толщиной 4 мм из стали 40. Дозатор 1 включают одновременно с включением лазерной установки и производят сканированное нанесение сплошное адгезионного монослоя 3 толщиной 80 мкм по всей поверхности образца (фиг. 2). Прочность адгезии, определенная с помощью штифтового метода, составляет 30 МПа. Затем производится включение дозатора 2 (фиг. 1) и задается программа работы дозаторов в соответствии с заданным графиком (фиг. 2), обеспечивая требуемое изменение состава за счет увеличения компоненты с высокой микротвердостью (1, фиг. 2) в пластичной матрице(2, фиг. 2). Таким образом за наплавленным слоем с высокой адгезионной прочностью к подложке (3, фиг. 2), следует несколько сплошных слоев с увеличением твердой составляющей на 20% на каждом шаге с целью исключения рисков снижения когезионной прочности между наплавляемыми слоями. Заключительный - поверхностный слой (4, фиг. 2) содержит 80% высокотвердой составляющей и обеспечивает высокую микротвердость и износостойкость покрытия.

Одновременно с увеличением подаваемой объемной доли порошка Al2O3 в зону фокуса лазерного луча, производится увеличение мощности лазерного излучения с 280 до 350 Вт, т.к. Al2O3 имеет более высокую температуру плавления, чем сталь 316. Результатом является получение сплошного практически беспористого покрытия, обладающего высокой износостойкостью. Микротвердость поверхностного слоя, измеренная на приборе ПМТ3 по базовой стандартной методике, составляет HRC58-60.

Пример 2.

Нанесение покрытий производится на базе ФГУП «ЦНИИ КМ «Прометей» с использованием установки селективной лазерной наплавки LENS 750. В качестве исходных материалов используют: порошок жаропрочного сплава Х20Н80 (дозатор 1, фиг. 1) со средним размером фракции 100 мкм и средним КТР 18*10-6 К-1, и высокотвердый порошок WC (HRC>70), средним КТР 5,8*10-6 К-1 (дозатор 2, фиг. 1) со средним размером фракции 100 мкм. Подложка - лист толщиной 4 мм из стали 40. Дозатор 1 включают одновременно с включением лазерной установки и производят нанесение адгезионного монослоя толщиной 100 мкм. Прочность адгезии, определенная с помощью штифтового метода, составляет 40 МПа. Затем производится включение дозатора 2 и производится послойная наплавка функционально-градиентного покрытия по схеме на фиг. 2. Таким образом за наплавленным слоем с высокой адгезионной прочностью к подложке (3, фиг. 2), следует несколько сплошных слоев с увеличением твердой составляющей на 20% на каждом шаге с гетерофазными границами с целью исключения рисков снижения когезионной прочности между наплавляемыми слоями. Заключительный - поверхностный слой (4, фиг. 2) содержит 80% высокотвердой составляющей и обеспечивает высокую микротвердость и износостойкость покрытия. Мощность лазерного излучения повышается от 280 до 400 Вт. Микротвердость поверхностного слоя, измеренная на приборе ПМТ3 по базовой стандартной методике, составляет HRC55-60.

Изобретение позволяет наносить функционально-градиентные покрытия, в которых химический состав сохраняется в пределах одного сплошного слоя и изменяется ступенчато по заранее заданной схеме (фиг. 2). При этом количество порошка твердой фазы изменяется от 0 до 80% (2, фиг. 2), а пластичной от 100 до 20% (1, фиг. 2) соответственно с шагом 20% на каждый наплавляемый слой. Это приводит к постепенному изменению КТР по толщине покрытия и исключает возникновение остаточных коэффициентных термических напряжений, обеспечивая тем самым высокую адгезионную и когезионную прочность покрытий и, как результат, высокотвердой поверхностный слой, обеспечивающий высокую износостойкость покрытия в условиях жестких механических и термических воздействий.


СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ
СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 251.
10.06.2013
№216.012.47b6

Способ снижения динамической нагруженности транспортного средства при движении по поверхности, самолет и транспортное средство, реализующие этот способ

Группа изобретений относится к способу снижения динамической нагруженности транспортного средства при движении по поверхности и транспортным средствам, реализующим этот способ. Способ заключается в том, что измеряют реакцию модели транспортного средства с разными характеристиками жесткости и...
Тип: Изобретение
Номер охранного документа: 0002483938
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.489a

Сплав на основе титана

Изобретение относится к цветной металлургии, а именно к производству титановых сплавов, и может быть использовано в конструкциях, работающих при температурах до 650°С, например для деталей корпуса и статорных лопаток компрессора высокого давления газотурбинных двигателей. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002484166
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b7d

Способ винтовой прокатки круглых профилей

Изобретение предназначено для повышения служебных характеристик изделий, изготовленных из круглого профиля из стали обычного качества и легированной, труднодеформируемых стали и сплавов, цветных металлов при использовании преимущественно в качестве исходной непрерывнолитой заготовки. Способ...
Тип: Изобретение
Номер охранного документа: 0002484907
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c19

Способ получения многофункционального покрытия на органическом стекле

Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники. Способ получения многофункционального покрытия на органическом...
Тип: Изобретение
Номер охранного документа: 0002485063
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c96

Способ получения биметаллического слитка

Изобретение относится к металлургии, конкретнее к области специальной электрометаллургии, а именно к производству биметаллических слитков с использованием электрошлаковой технологии. В способе размещают в качестве основного слоя биметаллического слитка стальную заготовку с зазором от стенки...
Тип: Изобретение
Номер охранного документа: 0002485188
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4ca7

Состав расплава на основе цинка для нанесения защитных покрытий на стальную полосу горячим погружением

Изобретение относится к области нанесения защитных металлических покрытий, в частности, к нанесению покрытий из расплава на основе цинка на стальную полосу. Расплав содержит 0,7-3,4 мас.% магния, 0,01-0,1 мас.% серебра, 0,84-4,08 мас.% алюминия, цинк - остальное. При этом содержание алюминия к...
Тип: Изобретение
Номер охранного документа: 0002485205
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4daa

Емкостный датчик давления

Изобретение относится к измерительной технике, в частности для измерения статического и динамического давления без нарушения целостности обтекания потока газа и изделий. Емкостный датчик давления состоит из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика. На...
Тип: Изобретение
Номер охранного документа: 0002485464
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4db8

Устройство для испытаний на контактную выносливость

Изобретение относится к технологии машиностроения, к устройствам для определения пластических деформаций и износа, испытаний на контактную выносливость плоских поверхностей деталей машин, изготовленных из металлических материалов. Устройство содержит привод, обкатник, сепаратор с деформирующими...
Тип: Изобретение
Номер охранного документа: 0002485478
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e36

Способ оценки звукоизоляции салона пассажирского самолета

Использование: в способах оценки звукоизоляции салона пассажирского самолета. Сущность: способ оценки звукоизоляции салона самолета в условиях полета заключается в одновременном измерении шума внутри салона с помощью акустических микрофонов или акустических антенн и измерении вибрации на...
Тип: Изобретение
Номер охранного документа: 0002485604
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5056

Способ получения керамического изделия

Изобретение относится к способам получения керамических материалов, предназначенных для высокотемпературных изделий конструкционного назначения, таких как элементы камеры сгорания и соплового аппарата газотурбинного двигателя. Способ получения керамического изделия на основе муллита,...
Тип: Изобретение
Номер охранного документа: 0002486159
Дата охранного документа: 27.06.2013
Показаны записи 21-30 из 43.
25.08.2017
№217.015.b1a0

Способ диагностики раннего неонатального сепсиса у новорожденных первых суток жизни по профилю экспрессии мрнк в клетках буккального соскоба

Изобретение относится к области медицины и предназначено для диагностики раннего неонатального сепсиса (РНС) у новорожденных первых суток жизни. В клетках буккального соскоба измеряют уровни экспрессии генов IL12A и CD68 относительно представленности мРНК референсных генов В2М, GUS, ТВР или...
Тип: Изобретение
Номер охранного документа: 0002613297
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b56e

Сплав на основе ниобия для формирования 3d-изделий сложной формы и покрытий

Изобретение относится к металлургии, а именно к прецизионным сплавам для получения 3d-изделий сложной формы и функциональных покрытий методом гетерофазного переноса. Композиционный сплав на основе ниобия, используемый для формирования 3d-изделий сложной формы и термобарьерных покрытий,...
Тип: Изобретение
Номер охранного документа: 0002614230
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b830

Способ прогнозирования устойчивости к инотропной терапии у новорожденных с артериальной гипотензией путем выявления молекулярно-генетических предикторов

Изобретение относится к области медицины и предназначено для прогнозирования устойчивости к инотропной терапии у новорожденных с артериальной гипотензией. Из образцов периферической крови выделяют ДНК. Методом полимеразной цепной реакции проводят генотипирование полиморфизмов генов...
Тип: Изобретение
Номер охранного документа: 0002615407
Дата охранного документа: 04.04.2017
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
09.06.2018
№218.016.5a31

Многослойный магнитный и электромагнитный экран для защиты от излучения силовых кабелей

Изобретение относится к многослойным покрытиям, используемым в радиоэлектронной и приборостроительной технике, в частности, при создании экранов для защиты от воздействия внешних магнитных и электромагнитных полей естественного и искусственного происхождения различных биологических и...
Тип: Изобретение
Номер охранного документа: 0002655377
Дата охранного документа: 28.05.2018
17.08.2018
№218.016.7c48

Способ получения сотового тонкостенного энергопоглотителя с помощью лазерного спекания

Изобретение относится к технологии получения сотовых тонкостенных энергопоглотителей. Энергопоглотитель изготавливают в виде ячеистой конструкции с ячейками произвольной формы из металлического порошка дисперсностью менее 50 мкм путем его послойного 20-40 мкм лазерного сплавления по заранее...
Тип: Изобретение
Номер охранного документа: 0002664010
Дата охранного документа: 14.08.2018
25.01.2019
№219.016.b41a

Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их...
Тип: Изобретение
Номер охранного документа: 0002678045
Дата охранного документа: 22.01.2019
11.03.2019
№219.016.db5c

Поглотитель электромагнитных волн

Изобретение относится к области радиотехники, в частности к поглотителям электромагнитных волн. Технический результат заключается в получении поглотителя электромагнитных волн для сверхширокополосных антенн, работоспособного в непрерывном диапазоне ультравысоких (УВЧ), сверхвысоких (СВЧ) и...
Тип: Изобретение
Номер охранного документа: 0002414029
Дата охранного документа: 10.03.2011
+ добавить свой РИД