×
29.03.2019
219.016.f817

Результат интеллектуальной деятельности: ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ С ПОНИЖЕННОЙ ПЛОТНОСТЬЮ И СПОСОБ ЕГО ОБРАБОТКИ

Вид РИД

Изобретение

Аннотация: Сплав на основе алюминия с пониженной плотностью предназначен для изготовления деформированных полуфабрикатов, в том числе листов, используемых в авиастроении. Сплав содержит мас.%: магний 4,2-5,0; цинк 3,2-3,9; медь 0,4-1,0; скандий 0,17-0,30; цирконий 0,07-0,14; титан 0,01-0,05; бериллий 0,0001-0,005; водород 0,05-0,35 см/100 г металла; марганец <0,25; хром <0,10; железо <0,30; кремний <0,20; алюминий - остальное, при отношении содержания магния к содержанию цинка - 1,3. Способ обработки сплава включает гомогенизацию при температуре 400-430°C в течение 6-15 часов, горячую деформацию при температуре 380-430°C и холодную деформацию на конечный размер при суммарной степени горячей и холодной деформации не менее 80%. Сплав обладает высокой прочностью в сочетании с пониженной плотностью. 2 н.п. ф-лы, 5 табл.

Предлагаемое изобретение относится к области металлургии алюминиевых сплавов, в частности деформируемых термически упрочняемых высокопрочных сплавов системы Al-Zn-Mg, предназначенных для изготовления деформированных полуфабрикатов, в том числе листов, используемых в авиастроении.

Цель изобретения - создать сплав на основе системы Al-Zn-Mg с высоким уровнем прочности и эксплуатационных характеристик с пониженной плотностью. Из известных термически упрочняемых сплавов системы Al-Zn-Mg наименьшую плотность имеет сплав В92 (Сборник «Алюминиевые сплавы», выпуск 3, издательство «Машиностроение», 1964 г., стр.76) следующего химического состава (мас.%):

Магний 3,9-4,6
Цинк 2,9-3,6
Марганец 0,6-1,0
Бериллий 0,0001-0,005
Железо ≤0,3
Кремний ≤0,2
Медь ≤0,05
Алюминий Остальное

Сплав В92 имеет низкую плотность - 2,72 г/см3, но по прочности он заметно уступает известным высокопрочным сплавам: листы из этого сплава после упрочняющей термообработки (закалки и искусственного старения) имеют σв=430-480 МПа, σ02=290-350 МПа.

Известен высокопрочный термически упрочняемый деформируемый сплав на основе алюминия, содержащий цинк, магний, медь, железо, кремний, скандий, цирконий, титан, никель и/или кобальт, бор и/или углерод, по крайней мере один элемент из группы гафний, молибден, церий, марганец, хром, иттрий, ванадий, ниобий, принятый за прототип (RU №23394113 C1, C22C 21/08, 10.07.2010, 5 страниц) [1] и имеющий следующий состав:

Цинк 2,5-4,0
Магний 4,1-6,5
Медь 0,2-1,0
Железо до 0,25
Кремний до 0,15
Скандий 0,005-0,3
Цирконий 0,005-0,25
Никель и/или кобальт до 0,1
Бор и/или углерод до 0,05
По крайне мере один элемент из группы:
Гафний до 0,15
Молибден до 0,15
Церий до 0,15
Марганец до 0,5
Хром до 0,28
Иттрий до 0,15
Ванадий до 0,15
Ниобий до 0,15
Алюминий и неизбежные примеси Остальное

Причем отношение содержания Mg к содержанию больше или равно 1,1.

Названный сплав в качестве неизбежных примесей содержит кальций, висмут, натрий, калий, водород, бериллий, свинец, олово и литий в количестве не более 0,01 мас.% каждого и не более 0,1 мас.% в сумме.

Сплав обладает достаточно высокими прочностными характеристиками и хорошими показателями статической и циклической трещиностойкости. Однако сплав малотехнологичен в металлургическом производстве, в частности при литье слитков, и обладает повышенной склонностью к трещинообразованию при сварке.

Технической задачей настоящего изобретения является создание сплава на основе системы Al-Zn-Mg с высоким уровнем прочности и характеристик трещиностойкости, необходимых для силовых элементов планера самолета, в сочетании с пониженной плотностью. При этом сплав должен обладать хорошей технологичностью в металлургическом производстве, в частности при литье слитков, и в машиностроительном производстве при выполнении операции аргоно-дуговой сварки.

Для решения этой задачи предлагается сплав на основе алюминия, содержащий магний, цинк, медь, в который дополнительно введены бериллий и водород при следующем соотношении (мас.%):

Магний 4,2-5,0
Цинк 3,2-3,9
Медь 0,4-1,0
Скандий 0,17-0,30
Цирконий 0,07-0,14
Титан 0,01-0,05
Бериллий 0,0001-0,005
Марганец ≤0,25
Хром ≤0,10
Железо ≤0,30
Кремний ≤0,20
Алюминий Остальное,

при отношении содержания магния к содержанию цинка, равном 1,3, и содержании водорода в количестве 0,05-0,35 см3/100 г металла.

Принятое в предлагаемом сплаве соотношение магния и цинка и пониженное содержание меди обеспечивает пониженное значение плотности - 2,71 г/см3.

Слитки непрерывного литья из предлагаемого сплава гомогенизируют при пониженной температуре 400-430°C в течение 6-15 часов, горячую деформацию осуществляют при температуре 380-430°C, а суммарная степень деформации при горячей и холодной термомеханической обработке должна превышать 80%.

Предложенный сплав отличается от известного [1] тем, что дополнительно содержит бериллий и водород при следующем соотношении компонентов, мас.%:

Магний 4,2-5,0
Цинк 3,2-3,9
Медь 0,4-1,0
Скандий 0,17-0,30
Цирконий 0,07-0,14
Титан 0,01-0,05
Бериллий 0,0001-0,005
Марганец ≤0,25
Хром ≤0,10
Железо ≤0,30
Кремний ≤0,20
Алюминий Остальное,

при отношении содержания магния к содержанию цинка, равном 1,3, и содержания водорода в количестве 0,05-0,35 см3 на 100 г сплава.

Предложенный способ обработки сплава отличается от известного [1] тем, что гомогенизацию проводят при температуре 400-430°C в течение 6-15 часов, горячую деформацию осуществляют при температуре 380-430°C при суммарной степени горячей и холодной деформации не менее 80%.

Деформированные полуфабрикаты из предлагаемого сплава подвергаются упрочняющей термообработке: закалке с 450-460°C в холодной воде и последующему старению по ступенчатым режимам, например по одному из двух рекомендуемых режимов:

1. 100°C, 10-24 ч + 150°C, 7-20 ч (старение на максимальную прочность, режим Т1).

2. 100°C, 10-24 ч + 190°C, 5-20 ч (небольшое перестаривание, при котором происходит некоторое снижение прочности, но достигается улучшенная коррозионная стойкость, режим Т2).

Основное упрочнение предлагаемого сплава определяется содержанием магния и цинка, образующих после закалки и старения частицы упрочняющих фаз η' и η (MgZn2), T(Al2Mg3Zn3) (в различной комбинации в зависимости от температуры и длительности старения). Однако принятые концентрации магния и цинка в предлагаемом сплаве не обеспечивают необходимой прочности. Для дополнительного упрочнения в сплав введены добавки переходных металлов скандия, циркония, титана. Механизм упрочнения сплава от этих добавок заключается в следующем. При кристаллизации в процессе непрерывного литья слитков упомянутые добавки почти полностью входят в пересыщенный твердый раствор, который при гомогенизации слитков при температуре 400-430°C распадается с выделением очень дисперсных наночастиц фазы Al3(Sc, Zr), в которой растворено небольшое количество титана. Цирконий и титан, входящие в состав наночастиц Al3Sc и замещающие атомы скандия, стабилизируют частицы и предотвращают их быструю коагуляцию при последующих технологических нагревах.

Эти наночастицы (размером от 5 до 15 нм) наследуются деформированными полуфабрикатами полученными из слитка и обусловливают значительное дополнительное упрочнение, во-первых, непосредственно (эффект дисперсионного твердения), во-вторых, за счет того, что наночастицы фазы Al3(Sc, Zr) повышают температуру рекристаллизации деформированных полуфабрикатов выше температуры нагрева под закалку, и в полуфабрикатах, в том числе в листах, сохраняется нерекристаллизованная, полигонизованная структура с мелким субзеренным строением нерекристаллизованных зерен, обеспечивая заметное структурное (субзеренное) упрочнение. Сохранение в листах из предлагаемого сплава после их закалки нерекристаллизованной структуры является принципиальным отличием от листов других высокопрочных алюминиевых сплавов.

Наличие в указанных пределах водорода, входящего при температурах обработки давлением в твердый раствор внедрения, обеспечивает повышенную технологическую пластичность и возможность достижения больших суммарных деформаций при обработке давлением.

Микродобавка бериллия меняет структуру защитной окисной алюминиевой плены, делает ее более плотной, предохраняя расплав от сильного пересыщения водородом, от окисления кислородом. Повышенные литейные свойства сплава и улучшенная свариваемость в значительной мере обусловлены присутствием микродобавки бериллия.

Суммарная величина упрочнения сплава непосредственно от наночастиц и от структурного упрочнения составляет 100-150 МПа и зависит от параметров термомеханической обработки, которой подвергается сплав в процессе изготовления деформированных полуфабрикатов. Основными параметрами термомеханической обработки, определяющими структуру и свойства полуфабрикатов из предлагаемого сплава, являются температура и выдержка при гомогенизации слитков, температура горячей деформации, суммарная степень горячей и холодной деформации. Режим гомогенизации слитков и температура горячей деформации определяют дисперсность нановыделений фазы Al3(Sc, Zr), а степень суммарной горячей и холодной деформации определяет величину субзерен, образующихся в процессе полигонизации при температуре нагрева под закалку.

Как показали проведенные исследования, оптимальным режимом термомеханической обработки предлагаемого сплава является следующий:

1. Низкотемпературная гомогенизация слитков при температуре 400-430°C, 6-15 ч обеспечивает выделение частиц фазы Al3(Sc, Zr) размером 5-15 нм.

2. Горячая обработка давлением (прокатка, прессование, ковка) при температуре 380-430°C обеспечивает сохранение наноразмеров выделений фазы Al3(Sc, Zr) и формирование стабильной полигонизованной структуры.

3. Суммарная степень горячей и холодной деформации не менее 80% обеспечивает формирование при последующем нагреве под закалку дисперсной субзеренной структуры с величиной субзерен 1-3 мкм.

Примеры осуществления

Из предлагаемого сплава среднего состава методом полунепрерывного литья отлиты плоские слитки сечением 165×550 мм, состав которых приведен в таблице 1.

Таблица 1.
Фактический состав предлагаемого сплава, мас.%
Сплав Легирующие компоненты и примеси
Zn Mg Cu Sc Zr Ti Be Mn Fe Si
Предлагаемый 3,6 4,6 0,7 0,19 0,08 0,03 0,0005 0,11 0,06 0,05

Сплав продемонстрировал хорошую технологичность при непрерывном литье слитков. Слитки имели ровную поверхность без неслитин и ликвационных наплывов.

Содержание водорода в слитке, определенное методом вакуумной экстракции, составило 0,18 см3/100 г металла.

Из слитков с соблюдением выше указанных параметров термомеханической обработки были изготовлены листы толщиной 9 мм (горячекатаные), 3,0 и 1,6 мм (горячая прокатка до 9 мм, далее холодная).

В таблице 2 приведены механические свойства листов разной толщины, подвергнутых упрочняющей термообработке. Нерекристаллизованные, полигонизованные листы всех толщин имеют высокие прочностные характеристики и низкую анизотропию свойств. С увеличением суммарной степени деформации прочностные свойства листов растут. Это обусловлено тем, что суммарная степень деформации при изготовлении листов влияет на субзеренную структуру - чем больше суммарная степень деформации, тем мельче субзерна и соответственно тем выше прочностные характеристики.

Деформированные полуфабрикаты с нерекристаллизованной структурой, в частности листы, изготовленные из предлагаемого сплава с соблюдением заявленных параметров термомеханической обработки, могут быть использованы, например, в двух состояниях: 1) после окончательной термообработки на максимальную прочность (Т1) и 2) после смягчающего старения (Т2), обеспечивающего высокую коррозионную стойкость при несколько пониженной прочности.

В таблице 3 и 4 приведены механические и ресурсные свойства тонких листов толщиной 1,6 мм из предлагаемого сплава в состоянии Т1 и Т2. Листы обладают хорошим сочетанием прочностных, пластических, ресурсных и коррозионных свойств. При этом плотность сплава составляет 2,71 г/см3.

В таблице 5 приведены свойства листов из предложенного сплава, полученных с соблюдением заявленных параметров термомеханической обработки в состоянии Т1 в сравнении со свойствами листов из сплава - прототипа.

Сравнение свойств тонких листов предлагаемого сплава с известным [1] показывает, что предлагаемый сплав прочнее (σв и σ02), имеет более высокие значения вязкости разрушения Ксу и свойства сварных соединений предлагаемого сплава заметно выше. Кроме того, проведенные лабораторные исследования показали, что предлагаемый сплав имеет более высокие показатели жидкотекучести, что обеспечивает лучшие литейные свойства и меньшую склонность к трещинообразованию при сварке.

Таблица 3.
Механические свойства листов толщиной 1,6 мм из предлагаемого сплава, термически обработанные на состояния Т1 и Т2
T1 - 100°C, 10 ч+150°C, 8 ч
Т2 - 100°C, 10 ч+190°C, 5 ч
Состояние Продольное направление Поперечное направление РСК, балл
σв, МПа σ02, МПа δ, % σв, МПа σ02, МПа δ, %
Т1 602 526 11,8 582 518 11,8 3-4
Т2 555 452 11,9 543 448 12,1 2-3

Таблица 4.
Характеристики трещиностойкости листов из предлагаемого сплава, термически обработанные на состояния Т1 и Т2
Т1-100°C,10 ч + 150°C, 8 ч
Т2-100°C, 10 ч + 190°C, 5 ч
Состояние Продольное направление Поперечное направление
Ксу, МПа√м σтрнетто, МПа СРТУ, мм/кцикл, ΔК=30 МПа√м Ксу, МПа√м σтрнетто, МПа СРТУ, мм/кцикл, ΔК=30 МПа√м
Т1 85,3 415 2,0 89,8 436 2,2
Т2 76,9 374 2,6 79,7 388 2,6

Источник поступления информации: Роспатент

Показаны записи 1-10 из 62.
20.02.2013
№216.012.2651

Штамповый блок для изотермического деформирования

Изобретение относится к обработке металлов давлением и может быть использовано при получении штампованных заготовок в изотермических или близких к ним условиях. Штамповый блок содержит верхний и нижний штампы с боковыми нагревателями и изоляцией, смонтированные в кожухах в рабочем пространстве...
Тип: Изобретение
Номер охранного документа: 0002475329
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2658

Способ получения металлического порошка методом центробежного распыления

Изобретение относится к порошковой металлургии, в частности к способам непрерывного получения металлического порошка. Литую заготовку плавят плазменной струей, направленной на ее торец. Центробежное распыление расплава осуществляют посредством вращающегося диска с центральным отверстием, через...
Тип: Изобретение
Номер охранного документа: 0002475336
Дата охранного документа: 20.02.2013
20.03.2013
№216.012.2f66

Способ вакуумной термической дегазации гранул жаропрочных сплавов в подвижном слое

Изобретение относится к порошковой металлургии, в частности к способу термической дегазации гранул жаропрочных сплавов и подготовке их к компактированию. Камеру дегазации вакуумируют до давления не более 1·10 мм рт.ст. и осуществляют дозированную подачу гранул на наклонную поверхность, нагретую...
Тип: Изобретение
Номер охранного документа: 0002477669
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.2f67

Способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов

Изобретение относится к порошковой металлургии, а именно к производству изделий из гранулируемых жаропрочных никелевых сплавов горячим изостатическим прессованием. Гранулами заполняют капсулу и проводят горячее изостатическое прессование с получением заготовки в оболочке. Оболочку удаляют по...
Тип: Изобретение
Номер охранного документа: 0002477670
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.30bb

Способ изготовления прутковой заготовки

Изобретение относится к способу изготовления прутковой заготовки из металла, используемой для дальнейшего передела. Способ включает установку в контейнере пресса предварительно нагретых прутковой заготовки, технологической шайбы из металла и прессшайбы, подпрессовку и прессование заготовки....
Тип: Изобретение
Номер охранного документа: 0002478013
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.30c4

Способ производства порошка из титановых сплавов

Изобретение относится к порошковой металлургии, в частности к получению порошка титановых сплавов. Торец цилиндрической вращающейся заготовки расплавляют потоком плазмы в среде инертного газа, при этом применяют дополнительное охлаждение камеры с помощью отдельной, не зависимой от плазмотрона...
Тип: Изобретение
Номер охранного документа: 0002478022
Дата охранного документа: 27.03.2013
20.04.2013
№216.012.35ff

Способ производства слитков деформируемых магниевых сплавов

Изобретение относится к области металлургии. Индукционную плавку шихтовых материалов ведут в стальном тигле в газовой среде, состоящей из смеси аргона и фреона 12 в соотношении 4:(1-2). Расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40...
Тип: Изобретение
Номер охранного документа: 0002479376
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.43ca

Способ производства листов из специальных сплавов на основе магния для электрохимических источников тока

Изобретение предназначено для повышения качества листов и исключения загрязнения окружающей среды при обработке давлением специальных магниевых сплавов, легированных высокотоксичными легкоиспаряющимися элементами или образующими при нагреве и последующей деформации опасные для здоровья оксиды,...
Тип: Изобретение
Номер охранного документа: 0002482931
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.43d7

Способ получения сварных конструкций из литых деталей алюминиевых сплавов

Изобретение может быть использовано для получения листосварных конструкций авиационного назначения. Способ включает обработку свариваемых кромок литых деталей перед сваркой путем осуществления сварки трением с перемешиванием. Затем механически обрабатывают кромки свариваемых деталей. При этом в...
Тип: Изобретение
Номер охранного документа: 0002482944
Дата охранного документа: 27.05.2013
27.06.2013
№216.012.50c4

Способ внепечного модифицирования алюминиевых сплавов

Изобретение относится к области металлургии легких сплавов и может быть использовано для получения слитков из алюминиевых сплавов повышенного качества при изготовлении изделий атомной, авиакосмической и автомобильной промышленности. Способ включает подачу расплавленного металла из миксера в...
Тип: Изобретение
Номер охранного документа: 0002486269
Дата охранного документа: 27.06.2013
Показаны записи 1-10 из 22.
10.08.2013
№216.012.5c2c

Способ производства листов из термически упрочняемых алюминиевых сплавов, легированных скандием и цирконием

Изобретение относится к области металлургии, и может быть использовано при производстве листов из высокопрочных термически упрочняемых алюминиевых сплавов, легированных скандием и цирконием. Способ включает проведение плавки, перегрев алюминиевого расплава, содержащего скандий и цирконий, до...
Тип: Изобретение
Номер охранного документа: 0002489217
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.63a5

Способ изготовления тонкостенных труб из высокопрочных алюминиевых сплавов системы al-zn-mg-cu, легированных скандием и цирконием

Изобретение относится к области металлургии, в частности к способам производства труб из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, легированных скандием и цирконием. Способ изготовления тонкостенных труб из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, легированных...
Тип: Изобретение
Номер охранного документа: 0002491146
Дата охранного документа: 27.08.2013
20.04.2014
№216.012.ba94

Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов и в качестве конструкционного материала. Сплав, содержит, мас.%: магний 5,6-6,3; титан 0,01-0,03;...
Тип: Изобретение
Номер охранного документа: 0002513492
Дата охранного документа: 20.04.2014
27.04.2014
№216.012.be97

Способ изготовления осесимметричных штампованных заготовок типа стаканов и чаш из высокопрочного алюминиевого сплава системы al-zn-mg-cu, легированного скандием и цирконием

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении осесимметричных штампованных заготовок типа стаканов и чаш из высокопрочного алюминиевого сплава системы Al-Zn-Mg-Cu, легированного скандием и цирконием. Нагретую литую цилиндрическую заготовку...
Тип: Изобретение
Номер охранного документа: 0002514531
Дата охранного документа: 27.04.2014
10.05.2014
№216.012.bf67

Высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu пониженной плотности и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения. Сплав содержит, мас.%: цинк 6,0-8,0; магний 3,4-4,2; медь 0,8-1,3; скандий 0,07-0,15;...
Тип: Изобретение
Номер охранного документа: 0002514748
Дата охранного документа: 10.05.2014
20.04.2016
№216.015.3699

Высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu пониженной плотности и изделие, выполненное из него

Изобретение относится к деформируемым сплавам на основе алюминия системы Al-Zn-Mg-Cu пониженной плотности и изделиям из них, предназначенным для разового применения. Сплав с плотностью 2,80 г/ см содержит, мас.%: цинк 6,0-8,0, магний 3,4-4,2, медь 0,8-1,3, скандий 0,02-0,06, цирконий 0,07-0,12,...
Тип: Изобретение
Номер охранного документа: 0002581953
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.76ee

Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала. Сплав содержит, мас. %: магний 5,7-6,3, титан 0,01-0,03,...
Тип: Изобретение
Номер охранного документа: 0002599590
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.b1ae

Высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu и изделие из него

Изобретение относится к области металлургии, в частности к высокопрочным деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала. Высокопрочный деформируемый сплав на основе алюминия системы...
Тип: Изобретение
Номер охранного документа: 0002613270
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.cf62

Деформируемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде прессованных прутков, в качестве электропроводного конструкционного материала преимущественно для...
Тип: Изобретение
Номер охранного документа: 0002621086
Дата охранного документа: 31.05.2017
29.12.2017
№217.015.fb9c

Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала. Деформируемый термически неупрочняемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002639903
Дата охранного документа: 25.12.2017
+ добавить свой РИД