×
29.03.2019
219.016.ee8e

Результат интеллектуальной деятельности: Способ определения параметров теплового комфорта в помещениях

Вид РИД

Изобретение

Аннотация: Изобретение относится к области промышленной экологии и может быть использовано для расчета параметров теплового комфорта помещений различного назначения. Способ оценки теплового комфорта в помещениях заключается в определении параметров теплового комфорта, которые учитывают комфортные микроклиматические параметры и личностные параметры, включающие метаболизм и характеристику одежды, для этого предварительно для каждого класса помещений определяют изокомфортные микроклиматические параметры, соответствующие заданному уровню теплового комфорта, после чего рассчитывают эквивалентную комфортную температуру, затем полученные значения эквивалентной комфортной температуры аппроксимируют в виде расчетных выражений для каждого класса помещений по следующей шкале: Технический результат – повышение информативности получаемых данных за счет получения обобщающего параметра для оценки теплового комфорта в помещениях различного назначения. 1 ил., 3 табл.

Изобретение относится к области промышленной экологии и может быть использовано для расчета уровня теплового комфорта помещений различного назначения.

Известен способ оценки комфортности рабочей зоны по параметрам микроклимата (патент РФ №2509322, МПК G01W 1/02, дата приоритета 16.08.2012, опубликовано 10.03.2014), в котором на основании полученных параметров - температуры воздуха в рабочей зоне, его влажности и скорости движения, а также температуры окружающих поверхностей в рабочей зоне - рассчитывают степень комфортности по определенной формуле.

Известен способ оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий микроклимата (патент РФ №2636807, МПК G05D 23/19, дата приоритета 29.06.2016, опубликовано 28.11.2016), в котором по данным предварительных измерений определяют коэффициент комфортности теплового состояния человека, коэффициент радиационного охлаждения, коэффициент асимметрии радиационных потоков, коэффициент качества воздушной среды и вычисляют уровень комфортности микроклимата по определенной формуле.

Известен способ определения уровня теплового комфорта по ГОСТ Р ИСО 7730, в соответствии с которым уровень теплового комфорта задается для помещений разных классов комфортности согласно показателю PMV (Predicted Mean Vote - прогнозируемая средняя оценка качества воздушной среды) и соответствующим ему показателем PPD (Predicted Percentage Dissatisfied - прогнозируемый процент недовольных параметрами среды).

Помещения класса комфортности А: -0,2<PMV<+0,2 (PPD<6%)
Помещения класса комфортности В: -0,5<PMV<+0,5 (PPD<10%)
Помещения класса комфортности С: -0,7<PMV<+0,7 (PPD<15%).

Показатели PMV и PPD рассчитывают в соответствии с известной методикой О. Фангера, реализованной в международном стандарте (см. ГОСТ Р ИСО 7730-2009 «Аналитическое определение и интерпретация комфортности теплового режима с использованием расчета показателей PMV и PPD и критериев локального теплового комфорта») как функция от четырех параметров микроклимата (температуры, влажности и подвижности воздуха, а также средней радиационной температуры) и двух личностных параметров (скорости метаболизма и теплоизоляционных характеристик одежды). Недостатком данных известных способов является то, что в них предусмотрена только оценка уровня теплового комфорта по известным микроклиматическим и личностным параметрам. Однако в практике проектирования систем жизнеобеспечения часто возникает обратная задача определения требуемых параметров, обеспечивающих заданный уровень теплового комфорта, что не обеспечивается известными способами.

Известен также способ построения таблиц изокомфортных параметров (Сулин А.Б., Рябова Т.В., Иванов С.В., Поддубный Р.А. Расчетное обоснование параметров микроклимата с заданным уровнем теплового комфорта // Холодильная техника - 2017. - №4. - С. 37-41). Известный способ базируется на решении обратной задачи, а именно на расчете совокупности параметров микроклимата при заданных личностных параметрах и заданном уровне теплового комфорта помещения. Вычисленные значения параметров микроклимата, обеспечивающих заданный уровень теплового комфорта, сведены в таблицы, названные таблицами изокомфортных параметров. Недостаток этого известного способа заключается в том, что он предполагает применение большого количества таблиц изокомфортных параметров, рассчитанных для различных уровней метаболизма, характеристик одежды и классов помещений, что затрудняет практическое применение, так как отсутствует единый обобщающий критерий.

Наиболее близким по технической сущности решением и принятый за прототип является способ определения эквивалентных температур по определенному уравнению, изложенный в работе (Madsen Т, Olesen В & Kristensen N (1984) Comparison between operative and equivalent temperature under typical indoor conditions. ASHRAE Transactions, ashrae.org, vol 90, part 1, pp 1077-1090), который включает использование уравнения для расчета эквивалентной температуры:

где teq - эквивалентная температура, °С; ta - температура воздуха, °С; - средняя радиационная температура, °С, νa - скорость воздуха, м/с; Icl - термическое сопротивление одежды, clo. Этот способ базируется на эмпирически полученном уравнении для эквивалентной температуры (параметра, соответствующего одинаковым теплоощущениям), которое представляет собой функцию температуры воздуха, средней радиационной температуры, подвижности, и характеристик одежды. Недостаток этого известного способа заключается в том, что получаемый параметр эквивалентной температуры характеризует только эквивалентные теплоощущения при заданном наборе микроклиматических и личностных параметров и не учитывает требуемый уровень теплового комфорта.

Решается задача получения обобщающего параметра для эквивалентной комфортной температуры, соответствующей требуемому уровню теплового комфорта в помещении.

Способ оценки теплового комфорта в помещениях заключается в определении параметров теплового комфорта, которые учитывают комфортные микроклиматические параметры и личностные параметры, включающие метаболизм и характеристику одежды, для этого предварительно для каждого класса помещений определяют изокомфортные микроклиматические параметры, соответствующие заданному уровню теплового комфорта, после чего рассчитывают эквивалентную комфортную температуру по формуле:

где: teqc - эквивалентная комфортная температура, °С; tac - температура воздуха комфортная, °С; - средняя радиационная температура комфортная, °С, - скорость воздуха комфортная, м/с; Icl - термическое сопротивление одежды, clo, затем полученные значения эквивалентной комфортной температуры аппроксимируют в виде расчетных выражений для каждого класса помещений по следующей шкале:

В заявляемом способе оценки теплового комфорта, рассчитывают эквивалентную комфортную температуру по формуле:

где: teqc - эквивалентная комфортная температура, °С; tac - температура воздуха комфортная, °С; - средняя радиационная температура комфортная, °С, - скорость воздуха комфортная, м/с; Icl - термическое сопротивление одежды, clo.

Для каждого класса помещений предварительно строят таблицы изокомфортных микроклиматических параметров, которые рассчитывают для различных уровней метаболизма и характеристик одежды.

Таблицы изокомфортных параметров для помещений класса В представлены на чертеже. Затем полученные значения из таблиц изокомфортных микроклиматических параметров подставляют в уравнение для расчета эквивалентной температуры и получают результаты в виде эквивалентной комфортной температуры.

Например, для помещений класса В:

Затем полученные значения эквивалентной комфортной температуры аппроксимируют в функции от личностных параметров (уровня метаболизма и характеристик одежды), в результате получают обобщающие расчетные выражения параметра эквивалентной комфортной температуры, соответствующей требуемому уровню теплового комфорта в помещении каждого класса.

Например, для помещений класса В:

для PMV=+0,49 teqc=40,23*0,77met*0,82clo,

для PMV=-0,49 teqc=53,60*0,58met*0,70clo.

Таким образом, шесть массивов данных с параметрами теплового комфорта для помещений классов А, В и С обобщают шестью расчетными алгебраическими выражениями.

Заявителем не выявлены технические решения, тождественные заявляемому изобретению, что позволяет сделать вывод о его соответствии критерию «новизна».

Заявляемый способ осуществляется следующим образом.

Для данного класса помещений по уровню комфортности, например, для помещений класса В, в соответствии с ГОСТ Р ИСО 7730 должно быть обеспечено значение показателя PMV в пределах -0,5<PMV<+0,5. Задаваясь значением метаболизма и термическим сопротивлением одежды, например, 1,1 met и 1 clo, строят таблицу изокомфортных микроклиматических параметров в виде зависимостей температуры воздуха от подвижности воздуха и средней радиационной разности температур, соответствующих заданному уровню теплового комфорта PMV=+0,49 и PMV=-0,49.

Полученные значения изокомфортных параметров (температура воздуха, подвижность воздуха, средняя радиационная температура) для заданного уровня метаболизма и термического сопротивления одежды подставляют в формулу эквивалентной температуры:

и рассчитывают эквивалентную комфортную температуру:

где: teqc - эквивалентная комфортная температура, °С; tac - температура воздуха комфортная, °С; - средняя радиационная температура комфортная, °С, - скорость воздуха комфортная, м/с; Icl - термическое сопротивление одежды, clo.

В результате получают таблицу с примерно одинаковыми значениями эквивалентной комфортной температуры (таблица 2).

Таким образом, полученная эквивалентная комфортная температура для условий термического сопротивления одежды 1,0 clo и уровня метаболизма 1,1 met равна 24,2°С при PMV=+0,49 и 20,3°С при PMV=-0,49.

Вычисления эквивалентной комфортной температуры повторяют для других величин уровней метаболизма и термического сопротивления одежды. Результаты вычислений сведены в таблицу 3

Обобщают рассчитанные значения эквивалентной комфортной температуры для помещений класса комфортности В в виде аппроксимирующих выражений:

Данные обобщающие расчетные выражения параметра эквивалентной комфортной температуры соответствуют требуемому уровню теплового комфорта в помещениях класса комфортности В. Таким образом, получают единый обобщающий критерий для определения параметров теплового комфорта.

Примеры реализации способа

Пример 1

Требуется определить необходимую подвижность воздуха в помещении класса комфортности В, если известно, что системой жизнеобеспечения поддерживается температура воздуха 23°С, средняя радиационная температура составляет 25°С, одежда персонала имеет характеристику 0,9 clo, уровень метаболизма при выполнении работ составляет 1,3 met.

Из выражений (2) и (3) эквивалентной комфортной температуры для помещений класса комфортности В рассчитаны эквивалентные комфортные температуры:

для PMV=+0,49 teqc=40,23*0,77met*0,82clo=23,86°С;

для PMV=-0,49 teqc=53,60*0.58met*0.70clo=19,20°С.

Преобразуя формулу для эквивалентной комфортной температуры (1) получаем выражение для скорости воздуха:

В результате расчета по формуле (4) получены значения для искомой скорости воздуха

для PMV=+0,49 νac=0,11 м/с;

для PMV=-0,49 νac=1,44 м/с.

Таким образом, для обеспечения состояния комфорта соответствующего помещениям класса В при заданных исходных данных скорость воздуха не должна быть ниже 0,11 м/с.

Пример 2

Требуется определить необходимую среднюю радиационную температуру в помещении класса комфортности В, если известно, что системой жизнеобеспечения поддерживается температура воздуха 25°С, подвижность воздуха 0,3 м/с, одежда персонала имеет характеристику 1,1 clo, уровень метаболизма при выполнении работ составляет 1,15 met.

Из выражений (2) и (3) эквивалентной комфортной температуры для помещений класса комфортности В рассчитаны эквивалентные комфортные температуры:

для PMV=+0,49 teqc=40,23*0,77met*0,82clo=23,83°С;

для PMV=-0,49 teqc=53,60*0.58met*0.70clo=19,39°C.

Преобразуя формулу для эквивалентной комфортной температуры (1) получаем выражение для средней радиационной температуры:

В результате расчета по формуле (5) получены значения для искомой средней радиационной температуры:

для PMV=+0,49

для PMV=-0,49

Таким образом, для обеспечения состояния комфорта соответствующего помещениям класса В при заданных исходных данных средняя радиационная температура должна находиться в пределах от 14,6 до 24,5°С.

Результаты апробации продемонстрировали эффективность применения заявляемого способа, подтвердили возможность достижения цели его создания и назначения, а именно, получения обобщающего параметра для определения уровня теплового комфорта в помещениях различного назначения.

Распространенность промышленных и бытовых объектов, для которых требуется оценить тепловой комфорт, обеспечивает заявляемому изобретению соответствие условию патентоспособности «промышленная применимость».


Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Источник поступления информации: Роспатент

Показаны записи 61-70 из 105.
04.04.2018
№218.016.35ab

Устройство для очистки овощей и корнеплодов от кожуры

Изобретение относится к пищевой промышленности и может быть использовано на консервных и овощесушильных предприятиях. Устройство содержит цилиндрическую обечайку, снабженную в направлении продольной оси симметрии чередующимися плоскими и криволинейными перегородками с окнами. В криволинейных...
Тип: Изобретение
Номер охранного документа: 0002646233
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.364a

Электрический сенсор на пары гидразина

Изобретение относится к устройствам и материалам для обнаружения и определения концентрации паров гидразина в атмосфере или пробе воздуха (химическим сенсорам) и может быть использовано в медицине, биологии, экологии и различных отраслях промышленности. Электрический сенсор на пары гидразина...
Тип: Изобретение
Номер охранного документа: 0002646419
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3661

Устройство для разделения жидкостей по плотности

Изобретение относится к пищевой промышленности, а именно к разделению жидкостей по плотности, например, при повышении или понижении концентрации ценных пищевых веществ, содержащихся в промывных водах при переработке растительного или животного сырья. Устройство для разделения жидкостей по...
Тип: Изобретение
Номер охранного документа: 0002646423
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36a7

Способ частотно-импульсной модуляции полупроводникового лазерного источника оптического излучения для опроса оптических интерферометрических датчиков

Изобретение относится к области оптических измерительных приборов и может быть использовано в оптических интерферометрических датчиках с полупроводниковыми источниками оптического излучения для формирования оптических импульсов и частотной модуляции оптической несущей без использования...
Тип: Изобретение
Номер охранного документа: 0002646420
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3975

Способ изготовления нанокомпозитов в стекле

Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу,...
Тип: Изобретение
Номер охранного документа: 0002647132
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3b57

Способ контроля остойчивости судна в условиях экстремального волнения

Изобретение относится к способу контроля остойчивости судна в условиях экстремального волнения. Для контроля остойчивости судна измеряют период бортовой качки, рассчитывают метацентрическую высоту определенным образом, рассчитывают характеристики ударного воздействия разрушающихся волн на...
Тип: Изобретение
Номер охранного документа: 0002647357
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4730

Устройство для измельчения пищевых продуктов

Изобретение относится к устройствам для измельчения и может быть использовано в пищевой промышленности на консервных или овощесушильных предприятиях. Устройство для измельчения содержит полый перфорированный ротор, полый перфорированный прессующий вал, очистительные ножи и разгрузочные шнеки,...
Тип: Изобретение
Номер охранного документа: 0002650554
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4797

Оптическое волокно для записи брэгговской решетки лазером с длиной волны в ближнем и среднем уф диапазоне, способ получения защитного фторполимерного покрытия оптического волокна и способ нанесения этого покрытия на кварцевую часть волокна

Группа изобретений относится к оптическим волокнам, в структуре световедущей части которых сформированы брэгговские решетки. Оптическое волокно с фторполимерным защитным покрытием, прозрачным на длине волны лазерного источника, позволяет записывать брэгговскую решетку прямо через такое...
Тип: Изобретение
Номер охранного документа: 0002650787
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47e5

Узкополосный фильтр

Узкополосный фильтр состоит из двух одинаковых прозрачных треугольных призм, которые изготовлены из материала с высоким показателем преломления. Между ними нанесены чередующиеся слои, изготовленные из материалов с низким и высоким показателями преломления. Технический результат - упрощение...
Тип: Изобретение
Номер охранного документа: 0002650750
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4807

Лидарный комплекс

Лидарный комплекс содержит лазерный источник зондирования, оптическую систему, направляющую лазерное излучение в инспектируемое пространство, приемный телескоп, спектроанализатор и фотоприемное устройство. Оптическая система содержит плоское зеркало эллиптической формы, выполненное с выборками...
Тип: Изобретение
Номер охранного документа: 0002650776
Дата охранного документа: 17.04.2018
+ добавить свой РИД