×
20.03.2019
219.016.e777

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТЕЙ ИЛИ ГАЗОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. Способ определения физических свойств жидкостей или газов включает возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления. Согласно изобретению в предложенном способе предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты. Изобретение обеспечивает повышение точности измерений. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. В частности, оно может быть применено в винодельческой промышленности для измерения концентрации водо-спиртовых растворов, виноматериалов и вин, содержания сахара в них и др.

Известны различные способы определения физических свойств веществ, основанные на измерении их электрофизических параметров с применением радиочастотных датчиков, содержащих контролируемое вещество (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука, 1989. 280 с.).

Известно также техническое решение (SU 867923, 30.09.1981), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Это техническое решение реализуется согласно способу, который заключается в возбуждении электромагнитных волн в волноводе, в частности в отрезке длинной линии, оконечной нагрузкой которого является чувствительный элемент, контактирующий с контролируемым веществом. Измеряя напряженность поля стоячей волны в каком-либо сечении вдоль отрезка длинной линии, судят о величине физического свойства вещества. Недостатком этого способа является невысокая точность измерения, обусловленная проведением амплитудных измерений.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе определения физических свойств жидкостей или газов, включающий возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления, достигается тем, что при этом предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты.

Предлагаемый способ поясняется чертежом, изображающим схему устройства для его реализации. Здесь введены обозначения: 1 - генератор, 2 - отрезок длинной линии, 3 - чувствительный элемент, 4 - детектор, 5 - блок перестройки частоты генератора, 6 - индикатор.

Способ реализуется следующим образом.

При возбуждении с помощью генератора 1 фиксированной частоты электромагнитных волн в отрезке длинной линии 2, к концу которого подсоединено нагрузочное сопротивление - чувствительный элемент 3, в отрезке длинной линии имеет место интерференция возбуждаемых и отраженных от чувствительного элемента волн. Она характеризуется режимом стоячих (точнее, смешанных) смешанных волн. Напряженность поля стоячей электромагнитной волны в какой-либо точке вдоль отрезка длинной линии является функцией нагрузочного сопротивления отрезка длинной линии, т.е. величины измеряемого параметра (физического свойства вещества). При отклонении этой величины от ее некоторого номинального значения, соответствующего определенному значению измеряемого параметра, напряженность поля стоячей волны в указанной точке также изменяется. Проведение частотных измерений позволяет получать полезную информацию независимо от нестабильности напряженности поля возбуждаемой электромагнитной волны.

Напряженности E1(z) и Е2(z) полей волн в каком-либо сечении с координатой z вдоль отрезка длинной линии, распространяющихся в противоположном направлении (первая волна - от генератора, вторая волна - от нагрузочного сопротивления) есть

где Е1 и Е2 - амплитуды величин E1(z) и E2(z); ƒ0 - частота возбуждаемых электромагнитных волн; φ - разность фаз встречных волн, зависящая от величины нагрузочного сопротивления и, следовательно, от величины измеряемого параметра x.

Напряженность поля стоячей электромагнитной волны в сечении с координатой z вдоль отрезка длинной линии при этом есть

Из формулы (3) следует, что напряженность поля стоячей волны в сечении с координатой z зависит как от разности фаз φ, так и от амплитуд Е1 и Е2. Эта разность фаз может быть определена независимо от Е1 и E2 по изменению положения какого-либо выбранного значения амплитуды Е, в частности по смещению положения одного из минимумов поля стоячей волны. Указанные минимумы расположены, как следует из (3), в сечениях с координатами zn (n=0, 1, 2,…) вдоль отрезка длинной линии:

Если вследствие изменения величины измеряемого параметра x имеет место фазовый сдвиг Δφ(x) относительно значения разности фаз φ=φ0, соответствующего некоторому номинальному значению х0 измеряемого параметра x, то каждый минимум поля стоячей волны перемещается вдоль отрезка длинной линии, как следует из (4), на расстояние

Отсюда видно, что величина Δz(x) не зависит от Е1, E2 и n, а является функцией только Δφ(x) и ƒ0. Величина Δφ зависит, в свою очередь, от реактивной (емкостной, индуктивной) составляющей нагрузочного сопротивления, функционально связанного с измеряемым параметром x.

Для определения величины измеряемого параметра x осуществляют, согласно предлагаемому способу, изменение частоты ƒ0 возбуждаемой электромагнитной волны на такую величину Δƒ до значения ƒ=ƒ0+Δƒ. При фиксированной частоте ƒ генератора восстанавливается положение минимума поля стоячей волны в сечении отрезка длинной линии с координатой zk, k=0, 1, 2,…, в котором подсоединен детектор.

Как видно из рассмотрения формулы (5), требуемое изменение частоты Δƒ возбуждаемой электромагнитной волны можно найти из соотношения

Отсюда находим

Следовательно, изменение частоты ƒ0 возбуждаемой волны на величину Δƒ приводит к восстановлению минимума напряженности поля стоячей волны в указанном сечении с координатой zk вдоль отрезка длинной линии. Частота Δƒ является мерой отклонения величины измеряемого параметра от его номинального значения x0, и значит, частота ƒ=ƒ0+Δƒ служит мерой величины самого измеряемого параметра х.

В реализующем предлагаемый способ устройстве от генератора 1 фиксированной частоты электромагнитные колебания поступают в отрезок длинной линии 2. К его противоположному концу подсоединен чувствительный элемент 3. Его эквивалентная электрическая схема может содержать, в зависимости от электрофизических параметров контролируемого вещества, электрическую емкость, индуктивность или их совокупность; может быть также подсоединен дополнительно резистор, характеризуя наличие диэлектрических потерь в контролируемом веществе.

С изменением величины измеряемого параметра происходит изменение, в частности, емкостной составляющей нагрузочного сопротивления, что предопределяет ее конструкцию, т.е. конструкцию чувствительного элемента 3. Чувствительным элементом 3 может являться, например, коаксиальный конденсатор (измерительная ячейка), заполняемый контролируемым веществом. Если контролируемое вещество является несовершенным диэлектриком или электропроводным веществом, то при покрытии внутреннего проводника указанного коаксиального конденсатора диэлектрической оболочкой контролируемое вещество в нем характеризуется эффективной диэлектрической проницаемостью двухслойного диэлектрика - вещества и диэлектрической оболочки (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука, 1989. С.125-131). При этом такое нагрузочное сопротивление становится емкостным. Величина измеряемого параметра определяется с учетом известных значений параметров такого чувствительного элемента (геометрических параметров конденсатора и диэлектрической проницаемости оболочки).

В некотором сечении вдоль отрезка длинной линии 2 к нему подсоединен детектор 4, с выхода которого продетектированный сигнал поступает в блок перестройки частоты генератора 5, подключенный выходом к генератору 1. В зависимости от амплитуды продетектированного сигнала, определяемой значением напряженности поля стоячей волны в указанном сечении с координатой zk, изменяется частота генератора 1. Величина этого изменения частоты Δƒ выражается формулой (7). При измерениях предварительно выбором частоты генератора ƒ0 или (и) длины отрезка длинной линии устанавливают минимум напряженности поля стоячей волны в указанном сечении с координатой zk при некотором номинальном значении x0 определяемого физического свойства вещества. Возбуждение в отрезке длинной линии электромагнитной волны на фиксированной частоте ƒ, измененной на величину Δƒ относительно частоты ƒ0, приводит к восстановлению в указанном сечении с координатой zk минимума поля стоячей волны. По величине ƒ, фиксируемой индикатором 6, подключенным к генератору 1, можно судить о величине измеряемого параметра x (физического свойства вещества).

Таким образом, предлагаемый способ характеризуется проведением высокоточных частотных измерений вместо амплитудных измерений, что приводит к существенному увеличению точности измерения.

Данный способ может быть применен для измерения различных физических свойств веществ в измерительных ячейках (при отборе пробы вещества), а также при измерениях в технологических емкостях и в трубопроводах с перемещаемыми по ним контролируемыми веществами.

Способ определения физических свойств жидкостей или газов, включающий возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления, отличающийся тем, что предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 101.
23.02.2019
№219.016.c6ad

Способ управления движением судна по заданной траектории

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. В способе используют сигналы текущего путевого угла и заданного значения путевого угла, которые совместно с сигналами угловой скорости судна и угла перекладки руля используют для формирования...
Тип: Изобретение
Номер охранного документа: 0002465169
Дата охранного документа: 27.10.2012
23.02.2019
№219.016.c6bb

Оптико-электронный расходомер потока газа или жидкости

Изобретение относится к области тепловой меточной расходометрии и может быть использовано для определения объемного или массового расхода газа или жидкости. Сущность: расходомер содержит измерительный трубопровод (1) с выравнивателем потока (2) на входе, управляемый генератор (3) тепловой метки...
Тип: Изобретение
Номер охранного документа: 0002460047
Дата охранного документа: 27.08.2012
01.03.2019
№219.016.cf3e

Способ определения плотности диэлектрических жидких веществ

Предлагаемое изобретение относится к области измерительной техники. Способ определения плотности диэлектрических жидких веществ, протекающих по диэлектрическому трубопроводу, при котором зондируют вещество электромагнитными колебаниями и принимают распространяющиеся по трубопроводу колебания....
Тип: Изобретение
Номер охранного документа: 0002404421
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d4b5

Счетчик-расходомер

Изобретение может быть использовано для измерения объемного и массового расхода в технологических трубопроводах, а также измерения плотности и количества газа или жидкости в узлах учета энергоресурсов для коммерческого расчета. Расходомер содержит сужающее устройство (2), датчик перепада...
Тип: Изобретение
Номер охранного документа: 0002396517
Дата охранного документа: 10.08.2010
08.03.2019
№219.016.d4b8

Способ измерения сопротивления и устройство для его реализации

Изобретение относится к области измерительной техники. Последовательно осуществляют три такта измерения периода колебаний, зависящего от значения измеряемого сопротивления при различной конфигурации частотно-зависимой цепи. В первом такте формируют измеряемую величину , где R - первое эталонное...
Тип: Изобретение
Номер охранного документа: 0002395098
Дата охранного документа: 20.07.2010
08.03.2019
№219.016.d525

Способ преобразования непрерывного сигнала в частоту и устройство для его осуществления

Изобретение относится к способам и устройствам преобразования сигнала. Техническим результатом является линеаризация преобразований от входного параметра до частотного выхода. Предложено устройство преобразования непрерывного сигнала в частоту, содержащее измерительное устройство с квадратичным...
Тип: Изобретение
Номер охранного документа: 0002413269
Дата охранного документа: 27.02.2011
08.03.2019
№219.016.d54d

Измеритель частоты резонаторного датчика технологических параметров

Изобретение относится к измерительной технике. Измеритель частоты резонаторного датчика технологических параметров содержит первый сумматор, соединенный соответственно первым и вторым плечами с резонаторным датчиком и выходом перестраиваемого по частоте генератора электромагнитных колебаний, и...
Тип: Изобретение
Номер охранного документа: 0002456556
Дата охранного документа: 20.07.2012
08.03.2019
№219.016.d563

Способ обработки и анализа изображений кометоподобных объектов, полученных методом "днк-комет"

Способ заключается в том, что в компьютер с биологического препарата, установленного на флуоресцентный микроскоп с видеокамерой, вводят изображение с кометоподобными объектами - «кометами», представляющими собой набор слитых и отдельностоящих флуоресцирующих точек разной яркости. Затем...
Тип: Изобретение
Номер охранного документа: 0002404453
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d598

Датчик малых расходов жидкости

Изобретение относится к области расходометрии и может быть использовано для определения расхода слабых (порядка десятков - сотен миллилитров в секунду) потоков жидкости. Сущность: устройство содержит резистивный нагреватель, установленный на трубе с потоком жидкости, калориметрический...
Тип: Изобретение
Номер охранного документа: 0002469277
Дата охранного документа: 10.12.2012
08.03.2019
№219.016.d5b2

Устройство для получения электрической энергии при механических колебаниях

Изобретение относится к электротехнике, к устройствам для получения электрической энергии от двух расположенных рядом элементов при их механическом колебании относительно друг друга и может быть использовано, в частности, для получения энергии во время движения железнодорожных составов за счет...
Тип: Изобретение
Номер охранного документа: 0002468491
Дата охранного документа: 27.11.2012
Показаны записи 31-40 из 86.
27.03.2016
№216.014.c78d

Способ определения положения границы раздела двух веществ в емкости

Изобретение относится к измерительной технике. В заявленном способе определения положения границы раздела двух веществ в емкости, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу раздела, размещают вертикально отрезок длинной линии длиной l,...
Тип: Изобретение
Номер охранного документа: 0002578749
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2e71

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах...
Тип: Изобретение
Номер охранного документа: 0002579359
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4603

Устройство для измерения давления

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком,...
Тип: Изобретение
Номер охранного документа: 0002586388
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.a204

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин, в частности механических величин, геометрических параметров объектов и физических свойств веществ. При реализации способа измерения физической величины с помощью...
Тип: Изобретение
Номер охранного документа: 0002606807
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a7eb

Способ измерения количества каждой компоненты многокомпонентной среды в емкости

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного количества (объема) многокомпонентной среды в емкости, произвольным образом распределенной внутри нее. В частности, оно может быть применено для измерения количества каждой компоненты...
Тип: Изобретение
Номер охранного документа: 0002611210
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8da

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья. Оно может быть применено также при бесконтактном измерении...
Тип: Изобретение
Номер охранного документа: 0002611334
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8e8

Способ измерения состава двухфазного вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002611439
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.ab10

Способ измерения состава трехкомпонентного водосодержащего вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами трехкомпонентного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002612033
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b28a

Способ измерения влагосодержания жидкости

Изобретение относится к электротехнике и может быть использовано для высокоточного измерения влагосодержания различных диэлектрических жидких веществ, в частности нефти и нефтепродуктов, находящихся в емкостях или перекачиваемых по трубопроводам. Способ измерения влагосодержания жидкости...
Тип: Изобретение
Номер охранного документа: 0002614054
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c922

Устройство для измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Оно может быть применено также для измерения диаметра других протяженных металлических изделий (стержней, нитей и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002619356
Дата охранного документа: 15.05.2017
+ добавить свой РИД