×
20.03.2019
219.016.e627

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ТАБЛЕТОК ЯДЕРНОГО ТОПЛИВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к ядерной технике, а именно к технологии изготовления таблеток ядерного топлива из смесей на базе диоксида урана, в частности к подготовке порошков к «сухому» прессованию. Способ изготовления таблеток ядерного топлива включает обработку исходных порошков с использованием шаров, последующее прессование и спекание. Обработку исходных порошков осуществляют в цилиндрической камере. Камера установлена под углом наклона ее оси к горизонту. Этот угол обеспечивает перемещение обрабатываемого порошка вдоль ее продольной оси. Камеру приводят в плоскопараллельное вращение. При таком вращении камера находится в состоянии покоя относительно собственной оси. Радиус и частоту вращения выбирают из условия закручивания шаров и их качения по внутренней поверхности камеры без отрыва от нее. Изобретение позволяет повысить качество по микроструктуре, однородность свойств по объему и химическую чистоту топливных таблеток, а также обеспечить регулируемость пористости и плотности таблеток в широком интервале значений без использования порообразующих добавок. 2 з.п. ф-лы, 5 табл.

Изобретение относится к ядерной технике, а именно к технологии изготовления таблеток ядерного топлива из смесей на базе диоксида урана, в частности к подготовке порошков к "сухому" прессованию.

Процесс подготовки порошков UO2 к прессованию заключается в улучшении их текучести и повышении насыпной плотности. Достигается это, как правило, путем измельчения исходных порошков, уплотнения, грануляции и сфероидизации гранулята. Измельчение осуществляется в шаровых, струйных, дисковых, молотковых и др. типах мельниц. Процесс уплотнения осуществляется методами прокатки валками, экструзии, брикетирования и др. Гранулирование производится путем протирания через сетки с фиксированным размером ячейки, а сфероидизация - окаткой гранул во всевозможных вращающихся емкостях.

Полученный таким образов гранулят в большинстве случаев смешивают с сухими смазывающими добавками, после чего передают на прессование. В качестве сухих смазок, как правило, используют стеараты цинка или алюминия.

В подавляющем большинстве технологий процессы уплотнения, грануляции и сфероидизации разделены операционно и существенно отличаются аппаратурным оформлением. Такое построение технологии требует межоперационных транспортировок, увеличивает потери сырья, снижает качество продукции по показателям однородности и химической чистоты.

Известен способ изготовления таблеток ядерного топлива (GB 2320800, МПК G21C 3/62, 01.07.1998), включающий измельчение исходного сырья диоксида урана и плутония с последующей прокаткой валками для повышения текучести. После прессования, несмотря на удовлетворительную текучесть порошка, механическая прочность сырых таблеток вследствие анизотропии свойств получаемых гранул после прокатки валками остается низкой. Прессование таких порошков известными способами при давлениях порядка 3 т/см2 приводит к отслаиванию торцов прессовок и другим видам нарушения целостности сырой таблетки (трещины, сколы).

В другом известном способе изготовления таблеток ядерного топлива (ЕР 0277708, МПК G21C 3/62, 10.08.1988), включающем измельчение исходных порошков мелющими телами, прессование и спекание, также используется прокатка порошков валками с известными негативными последствиями.

Наиболее близким по технической сущности и достигаемому результату к описываемому (прототипом) является способ изготовления таблеток ядерного топлива (RU 2165651, МПК G21C 3/64, 20.04.2001), включающий измельчение исходных порошков мелющими телами, прессование и спекание, в котором измельчение исходного порошка проводят шарами с d≥9 мм, разгоняемыми до ускорений не менее 4,12g в планетарной, и/или шаровой, и/или тороидальной мельницах. Причем прессование осуществляют давлением 0,52…2,35 т/см2.

Известный способ обеспечивает достаточную прочность сырых таблеток при низких давлениях прессования, но характеризуется недостаточной производительностью, цикличностью и малым ресурсом работы оборудования. Причем при использовании планетарных мельниц наблюдается нагартовка материала на внутренних стенках камеры. Длительность времени обработки на тороидальных мельницах приводит к перегреву подшипниковых узлов и камеры и требует охлаждения оборудования между циклами работы; к повышенному загрязнению обрабатываемого материала металлическими включениями. Из-за цикличности обработки снижается однородность свойств обработанного порошка.

Регулировка плотности в данном способе изготовления таблеток осуществляется введением порообразователя в готовый гранулят, что уменьшает эффективность его действия, увеличивает разброс значений плотности и снижает химическую чистоту таблеток.

Таким образом, известные способы "сухого" прессования характеризуются либо большим количеством операций, что снижает качество продукции по показателям однородности и химической чистоты, увеличивает потери сырья на межоперационных транспортировках, требует большого количества единиц оборудования, производственных площадей и увеличивает численность обслуживающего персонала, либо обладает узкими возможностями реализации различных требований к таблеткам, низкой производительностью, цикличностью и малым ресурсом работы оборудования. Кроме того, большинство известных технологий требуют использования лишь одного типа исходного порошка, не обеспечивают высоких насыпных характеристик, что требует повышенных давлений прессования, прецизионного пресс-инструмента, специальных прессов и оснастки, автоматизированной системы съема, укладки и транспортирования сырых таблеток.

Растущие требования к таблеткам требуют введения в порошок UO2 все большего числа различных технологических, эксплуатационных и легирующих добавок, количество которых изменяется от десятков (U3O8) до десятых и даже тысячных долей процентов по массе. Это вынуждает включать в технологию целые каскады дополнительных единиц оборудования для получения однородных сухих смесей.

Задачей настоящего изобретения является создание способа изготовления таблеток ядерного топлива, позволяющего перерабатывать исходные порошки различных типов, характеризующегося непрерывностью процесса подготовки гранулята с высокими насыпными характеристиками и текучестью, однородностью свойств по объему, обеспечивающего достаточную формуемость и прессуемость при низких давлениях прессования и высокую прочность сырых таблеток при минимальном количестве технологических операций, сохраняющего химическую чистоту обрабатываемого материала и уменьшающего потери сырья, сокращающего количество единиц оборудования, число обслуживающего персонала и производственные площади, использующего существующие прессы и пресс-инструмент и не требующего значительных затрат на создание автоматизированной системы съема и укладки сырых таблеток.

В результате решения данной задачи можно получить новые технические результаты, заключающиеся в повышении качества по микроструктуре и однородности свойств по объему, химической чистоте топливных таблеток, в обеспечении регулируемости пористости и плотности таблеток в широком интервале значений без использования порообразующих добавок.

Данные технические результаты достигаются тем, что в способе изготовления таблеток ядерного топлива, включающем обработку исходных порошков с использованием шаров, последующее прессование и спекание; обработку исходных порошков осуществляют в цилиндрической камере, которая установлена под утлом наклона ее оси к горизонту, обеспечивающим перемещение обрабатываемого порошка вдоль ее продольной оси, и которую приводят в плоскопараллельное вращение, радиус и частоту которого выбирают из условия закручивания шаров и их качения по внутренней поверхности камеры без отрыва от нее, при этом камера находится в состоянии покоя относительно собственной оси.

Радиус орбиты вращения камеры А и частоту ее вращения ω определяют, в частности, по следующим зависимостям:

где D - внутренний диаметр камеры, d - диаметр шара. D0 - диаметр орбиты вращения камеры, g - ускорение свободного падения.

Первая из указанных зависимостей получена экспериментально. На опытах установлено, что закручивание шаров имеет место, только если радиус орбиты вращения камеры не меньше разности внутреннего радиуса камеры и радиуса шара.

Вторая из указанных зависимостей получена из условия mω2A≥mg, где mω2А - действующая на шар массой m центростремительная сила, а mg - сила тяжести. Если центростремительная сила больше или равна силе тяжести, шар не оторвется от поверхности камеры даже в ее верхней части.

Соблюдение этих условий обеспечивает закручивание шаров и их качение по внутренней поверхности камеры без отрыва от нее.

Количество шаров предпочтительно выбирают из условия обеспечения покрытия ими внутренней поверхности камеры при ее вращении монослоем без существенных разрывов.

Используемый в способе характер движения шаров обеспечивает постоянный контакт мелющих тел с обрабатываемым материалом, что в несколько раз повышает эффективность обработки по сравнению с тороидальной вибрационной мельницей. Для исключения эффекта нагартовки обрабатываемого материала на стенках камеры последняя совершает плоскопараллельное вращение и находится в состоянии покоя относительно собственной продольной оси. Характер движения рабочей камеры обеспечивает перемещение обрабатываемого материала вдоль продольной оси рабочей камеры при наличии угла наклона ее к горизонту. Величина угла наклона α определяет скорость перемещения порошка. Время обработки t порошка, обеспечивающее достижение нужной насыпной плотности гранулята, определяется экспериментально, после чего устанавливается соответствующий угол наклона α, зависящий от длины рабочей камеры и времени обработки порошка

где L - длина рабочей камеры, t - время обработки порошка.

Наиболее эффективные результаты достигаются при загрузке шаров в количестве (масса М), которое обеспечивает покрытие внутренней поверхности камеры при ее вращении монослоем без существенных разрывов, т.е.

где М - масса шаров, k - масса одного шара.

Тогда скорость перемещения v порошка вдоль оси камеры

где а производительность метода составит

где m - масса порошка; n=М/m - отношение массы шаров к массе порошка, которое определяется экспериментально из условия достижения насыпной плотности после утряски требуемого значения.

Отличительная особенность описываемого изобретения заключается в следующем. Так как силовое воздействие на порошок оказывается шаром в одной точке, то легко добиться высоких усилий, а поскольку при качении шара таких точек образуется множество, достигается высокая эффективность обработки. Легкость управления скоростью шаров обеспечивает управляемость процессами измельчения и уплотнения порошка, происходящими в предлагаемом способе одновременно. Характер движения порошка в цилиндрической камере, совершающей плоско-параллельное вращение, обеспечивает хорошее перемешивание и агломерацию. Такая обработка позволяет легко регулировать плотность и прочность гранул, а также насыпные характеристики гранулята в широком диапазоне значений, что обеспечивает возможность управления пористостью и плотностью таблеток, не требуя высоких давлений прессования.

Плотность и прочность гранул регулируется путем изменения угла наклона оси камеры и, вследствие этого, времени обработки порошка.

Следует также подчеркнуть, что описываемый способ предполагает высокую гомогенизацию смесей, что позволяет эффективно использовать различные легирующие добавки, а также получать высококачественные топливные таблетки как с использованием закиси-окиси урана, так и без нее.

Реализация описываемого способа может быть проиллюстрирована возможностью получения качественных таблеток ядерного топлива из исходных порошков, полученных по различным технологическим схемам: аммонийдиуранат-процесс (АДУ), газопламенный, сухая конверсия. Обработка порошков осуществлялась стальными шарами в цилиндрической рабочей камере. Исходный порошок шнеком подавали в приемник. Весь макет устанавливался под нужным углом наклона к горизонту. Обработанный порошок (гранулят) поступал в устройство выгрузки.

В полученный гранулят добавляли ~0,2% мас. стеарат цинка, окатывали смесь в биконическом барабане в течение 20 мин и подавали на прессование. Сырые таблетки имели достаточную прочность и хороший внешний вид. Спекание проводили в промышленной водородной печи BTU при температуре 1730…1750°С. Спеченные таблетки отличались равномерной структурой пористости. Крупные поры отсутствовали. Размер зерна составил ~10 мкм.

В табл. 1 приведены характеристики гранулята и таблеток, полученных из порошка разного типа при различных режимах изготовления на установке в соответствии с предложенным способом и на установке в соответствии с прототипом.

Одинаковый уровень качества таблеток достигается при времени обработки исходного порошка предлагаемым способом, по крайней мере, в шесть раз меньше, чем способом, описанным в прототипе.

В табл. 2 приведены результаты измерений характеристик исходного порошка и обработанного порошка (гранулята), полученного на полупромышленной установке.

В табл.3 представлены результаты изготовления таблеток из пресспорошка, приготовленного при двух различных значениях n (отношение массы шаров М к массе порошка m).

В табл.4 представлены характеристики спеченных таблеток, изготовленных при различных давлениях прессования.

Для иллюстрации возможности регулирования плотности без использования порообразователя из одной партии исходного порошка UO2 были изготовлены две партии гранулята при различных углах наклона камеры установки в расчете на получение таблеток с плотностью 10,55 и 10,45 г/см3. Характеристики спеченных таблеток приведены в табл. 5.

Таблица 5.
№ партии гранулята Плотность спеченных таблеток, г/см3 Открытая пористость, % Микроструктура Усадка по диаметру, %
Отношение пор <10 мкм, %* Средний размер зерна, мкм
1 10,55 0,1 95,2 12,4 17,2
2 10,46 0,1 94,8 10,0 16,1

Таким образом, при реализации способа в результате одной операции осуществляют прямую трансформацию исходных порошков различных типов в пресспорошок (гранулят) с высокими насыпными характеристиками, обеспечивающими регулирование пористости и плотности спеченных таблеток без использования порообразующих добавок при низких давлениях прессования.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 44.
10.06.2014
№216.012.cc3f

Дистанционирующая решетка тепловыделяющей сборки ядерного реактора (варианты)

Изобретение относится к атомной энергетике, а именно к конструктивным элементам тепловыделяющих сборок (ТВС) ядерных реакторов типа ВВЭР. Дистанционирующая решетка (ДР) содержит группы взаимно пересекающихся параллельных пластин, расположенных в один ярус и образующих шестиугольные ячейки для...
Тип: Изобретение
Номер охранного документа: 0002518058
Дата охранного документа: 10.06.2014
20.08.2014
№216.012.ea74

Способ получения таблеток ядерного керамического топлива с регулируемой микроструктурой

Изобретение относится к ядерной технике, в частности к изготовлению таблетированного топлива для тепловыделяющих элементов, и с наибольшей эффективностью может быть использовано при изготовлении из диоксида урана крупнозернистых топливных таблеток высокой ядерной чистоты с улучшенной и...
Тип: Изобретение
Номер охранного документа: 0002525828
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.06e7

Опорная решетка-фильтр для тепловыделяющей сборки ядерного реактора

Изобретение относится к атомной энергетике, а именно к тепловыделяющим сборкам ядерных реакторов типа ВВЭР, в которых твэлы не закрепляются в несущих решетках, а опираются на них. Опорная решетка-фильтр для тепловыделяющей сборки выполнена в виде перфорированной пластины 1, имеющей в плане...
Тип: Изобретение
Номер охранного документа: 0002533168
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0ba7

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющих сборок (ТВС), используемых, преимущественно, для реакторов РБМК-1000, а также ВВЭР-440 и ВВЭР-1000. Конструкция крепления твэлов в несущей концевой (опорной) решетке (HP) имеет цилиндрическую часть из циркониевого...
Тип: Изобретение
Номер охранного документа: 0002534391
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.197b

Способ нанесения лакового покрытия на поверхность тепловыделяющих элементов (твэлов) с оболочками из циркониевых сплавов перед снаряжением их в каркас тепловыделяющей сборки (твс) и устройство для его осуществления

Заявленная группа изобретений относится к атомной энергетике и может быть использована при изготовлении тепловыделяющих элементов (твэлов) и снаряжении их в тепловыделяющую сборку (ТВС) преимущественно для водо-водяных энергетических реакторов. В способе нанесения лакового покрытия на...
Тип: Изобретение
Номер охранного документа: 0002537951
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2538

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющих сборок (ТВС) ядерных реакторов типа ВВЭР. ТВС содержит дистанцирующую решетку с ободами. На каждой из решеток, на верхней кромке каждой грани обода, а также под уголками посредине между периферийными твэлами...
Тип: Изобретение
Номер охранного документа: 0002540981
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a73

Тепловыделяющая сборка ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющей сборки (ТВС) ядерного реактора типа ВВЭР-440. Чехол ТВС соединяется с хвостовиком с помощью 6-ти специальных винтов, имеющих коническую форму головки снизу. На гранях посадочного места концевой детали в средней...
Тип: Изобретение
Номер охранного документа: 0002542324
Дата охранного документа: 20.02.2015
20.04.2015
№216.013.4231

Аппарат для гидролиза гексафторида урана

Изобретение может быть использовано при получении чистых солей и окислов из гексафторида урана (ГФУ). Аппарат для гидролиза гексафторида урана содержит корпус, в верхней части которого установлены средства для подачи гексафторида урана и орошающего раствора. В корпусе расположено устройство для...
Тип: Изобретение
Номер охранного документа: 0002548443
Дата охранного документа: 20.04.2015
20.02.2019
№219.016.c02e

Способ и установка для металлотермического получения щелочно-земельных металлов

Изобретение относится к способам и устройствам для получения щелочно-земельных металлов в процессе их восстановления, а конкретнее к способу и установке для металлотермического получения щелочно-земельных металлов. Способ включает загрузку в печь брикетов, полученных прессованием смеси из...
Тип: Изобретение
Номер охранного документа: 0002339716
Дата охранного документа: 27.11.2008
20.02.2019
№219.016.c18a

Опорная решетка для тепловыделяющей сборки ядерного реактора

Изобретение относится к атомной энергетике, а именно к элементам ТВС (тепловыделяющей сборки), и используется в реакторах ВВЭР-440, ВВЭР-1000. Опорная решетка для тепловыделяющей сборки ядерного реактора выполнена в виде перфорированной пластины с круглыми отверстиями. Круглые отверстия...
Тип: Изобретение
Номер охранного документа: 0002419898
Дата охранного документа: 27.05.2011
Показаны записи 11-20 из 37.
20.04.2016
№216.015.346c

Структура пластинчатой решетки для тепловыделяющей сборки

Изобретение относится к области ядерной техники и предназначено для использования в конструкциях дистанционирующих и перемешивающих решеток тепловыделяющих сборок (ТВС) энергетических ядерных реакторов. Структура решетки для ТВС состоит из ячеек, предназначенных для размещения твэлов, их...
Тип: Изобретение
Номер охранного документа: 0002581620
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.387f

Применение пептида thr-lys-pro-arg-pro-gly-pro (селанк) для гепатопротекторного воздействия при остром иммобилизационном стрессе

Изобретение относится к медицине. Изобретение касается применения пептида, имеющего формулу Thr-Lys-Pro-Arg-Pro-Gly-Pro (селанк), для гепатопротекторного воздействия при остром иммобилизационном стрессе. Изобретение обеспечивает достоверное повышение в печени активности антиоксидантных...
Тип: Изобретение
Номер охранного документа: 0002582963
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b03

Комбинированная концентраторная фотоэлектрическая установка

Изобретение относится к гелиотехнике, в частности к комбинированным концентраторным солнечным энергетическим установкам с охлаждаемыми двухсторонними фотоэлектрическими солнечными модулями (ФСМ) для преобразования солнечной энергии в электрическую и тепловую. Сущностью изобретения является...
Тип: Изобретение
Номер охранного документа: 0002583317
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.7974

Способ для расширения ветви нижней челюсти и компрессионно-дистракционное устройство для его осуществления

Группа изобретений относится к медицине. Компрессионно-дистракционное устройство для расширения ветви нижней челюсти состоит из трубчатого корпуса. Внутри корпуса размещен ходовой винт, который слева имеет участок с левой резьбой и участок с правой резьбой. На резьбовых участках ходового винта...
Тип: Изобретение
Номер охранного документа: 0002599370
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.816d

Средство для лечения гнойно-воспалительных процессов мягких тканей и слизистых оболочек

Изобретение относится к области медицины, а именно к средствам, обладающим антимикробным, сорбционным, обезболивающим и ранозаживляющим действием на местные гнойно-воспалительные процессы мягких тканей и слизистых оболочек, используемым в хирургии, дерматологии, акушерстве и гинекологии,...
Тип: Изобретение
Номер охранного документа: 0002601897
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.aa62

Флюс для пайки электродов аккумуляторов из свинцовых сплавов

Изобретение может быть использовано при производстве свинцовых аккумуляторов, в частности для батарей резервного питания и двойного назначения. Флюс содержит бромистоводородную кислоту, моноэтаноламин, изопропиловый спирт, N-Метил-2-пирролидон и адипиновую кислоту при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002611626
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b045

Энергосберегающая установка для охлаждения молока с использованием искусственного и естественного холода и экологически безопасного хладоносителя с низкой температурой замерзания

Изобретение относится к сельскому хозяйству, в частности к установкам для охлаждения молока. Установка содержит приемник естественного холода, расположенный на открытом воздухе и снабженный датчиком температуры наружного воздуха, датчиком температуры хладоносителя с низкой температурой...
Тип: Изобретение
Номер охранного документа: 0002613454
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.d2b6

Способ одновременного определения примесей этилендиаминтетрауксусной кислоты, диметилсульфоксида и n-этилмалеимида в фармацевтических субстанциях методом обращенно-фазовой высокоэффективной жидкостной хроматографии

Изобретение относится к исследованию или анализу материалов с использованием хроматографии. Способ одновременного определения примесей этилендиаминтетрауксусной кислоты (ЭДТА), диметилсульфоксида (ДМСО) и N-этилмалеимида (ЭТМ) в фармацевтических субстанциях методом обращенно-фазовой...
Тип: Изобретение
Номер охранного документа: 0002621645
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d47a

Тепловыделяющая сборка ядерного реактора

Изобретение относится к к тепловыделяющим сборкам (ТВС) ядерных реакторов типа ВВЭР (ВВЭР-440, ВВЭР-1000 и т.п.). В заявленной ТВС предусмотрено выполнение анти debris-фильтров (АДФ) в форме толстостенной цилиндрической оболочки, имеющей несколько концентричных относительно ее оси рядов...
Тип: Изобретение
Номер охранного документа: 0002622112
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d9e8

Тепловыделяющая сборка ядерного реактора

Изобретение относится к тепловыделяющим сборкам (ТВС) ядерных реакторов типа ВВЭР (ВВЭР-440, ВВЭР-1000 и т.п.). В заявленном изобретении предусмотрено оснащение ТВС анти- debris-фильтрами (АДФ), устанавливаемыми в хвостовики ТВС, при этом несущая решетка тепловыделяющей сборки с фильтрующими...
Тип: Изобретение
Номер охранного документа: 0002623580
Дата охранного документа: 28.06.2017
+ добавить свой РИД