×
20.03.2019
219.016.e423

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ТВЕРДОФАЗНЫХ НАНОСТРУКТУРИРОВАННЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологиям и может быть использовано при получении углеродных нанотрубок. В парогазогенераторе 4 готовят многофазную смесь исходного вещества и направляют ее под давлением в газодинамический резонатор 9, где смесь детонирует. Продукты детонационного горения через сопло 2 поступают в камеру 2, расширяются и охлаждаются, формируя кластеры. Полученные кластеры направляют на мишень 12 с образующей матрицей 1, размещенную в камере 2. Подложка 11 мишени 12 снабжена системой регулирования температуры, обеспечивающей периодический нагрев и охлаждение. На образующей матрице 1 происходит образование и рост твердофазных наноструктурированных материалов. С падением давления в газодинамическом резонаторе 9 поступление многофазной смеси в него возобновляется и процесс повторяется. Изобретение позволяет обеспечить оптимальные условия роста наноструктурированных материалов и за счет этого повысить эффективность процесса. 1 ил.

Изобретение относится к нанотехнологиям и может быть использовано при получении твердофазных наноструктурированных материалов, в частности углеродных нанотрубок.

Впервые углеродные нанотрубки обнаружены Иидзимой на графитовых электродах дугового разряда [S.Iijma. Nature 354, 1991].

Известен способ электродугового распыления графитового анода в атмосфере гелия [А.К.Zettl, M.L.Cohen, patent US №6063243, 11.05.2000]. В этом методе используется постоянный ток силой 50-200 А, напряжение разряда 10-60 В и в качестве электродов используются цилиндрические графитовые стержни, по каналам которых в область дугового разряда подаются азот и бор в качестве катализаторов. Давление газа в рабочей камере составляет 650 торр. При оптимальных режимах углерод осаждается на катоде с образованием углеродных нанотрубок.

Недостатком этого способа является то, что процесс образования углеродных нанотрубок в интенсивном дуговом разряде трудно управляем, что приводит к ухудшению структуры и свойств нанотрубок.

Известен способ генерации кластеров, основанный на испарении исходного материала в печи, смешивании пара с буферным газом и охлаждении смеси в процессе ее расширения в вакуум [см. Т.Takagi Pure Appl. Chem. 60 (781) 1988; E.Becker Laser Part. Beams 7 (743) 1989; O.Hagena Rev. Sei. Instrum. 3 (2374) 1992].

Недостатком этого способа создания кластерных пучков является то, что он не применим для жаропрочных и тугоплавких материалов, в частности для углерода.

Известен лазерный способ испарения исходного материала, основанный на нагреве исходного материала с помощью лазерного излучения [Smally et. al., patent US №6183714 B1, 06.02.2001].

Недостатком известного технического решения является его высокая энергоемкость.

Известен способ получения углеродных нанотрубок путем магнетронного распыления углерода в камере с инертным газом при давлении 1-5·10-2 торр [см. патент RU №2218299 В82В 3/00, С23С 14/35, публикация от 17.07.02].

Недостатком этого способа является сложность согласования оптимальных значений давления в камере магнетронного распыления углерода и давления буферного газа.

Известен способ получения алмазоуглеродного вещества (см. патент RU №2041165, кл. С01В 31/06, 1995 г.), основанный на формировании кристаллического углерода в детонационных волнах при детонации взрывчатого вещества (ВВ) с отрицательным кислородным балансом в замкнутом объеме в среде, инертной по отношению к углероду с последующим охлаждением продуктов детонации со скоростью 200-6000°С/мин.

Недостатком этого способа является то, что детонация ВВ в замкнутом объеме не создает благоприятных условий для формирования фуллеренов и углеродных нанотрубок. Кроме того, высокая трудоемкость операций по загрузке ВВ в замкнутый объем и извлечению из него продуктов детонации делает этот способ низкорентабельным при детонационном синтезе даже нанодисперсных алмазов.

Известен способ получения углеродных нанотрубок при горении углеводородов [Н.М.Duan, J.T.Mckinnon J.Phys.Lett. 98 (12815) 1994].

Недостатком известного способа получения углеродных нанотрубок при горении углеводородов является сравнительно низкие достигаемые при этом значения температуры и давления и, как следствие, низкий выход углеродных нанотрубок.

Наиболее близким из известных технических решений предлагаемому способу является способ получения твердофазных наноструктурированных материалов [см. патент RU №2179526 С01В 31/00, публикация от 29.11.1999], основанный на нанесении вещества на исходную образующую матрицу, в качестве которой используют мезопористые молекулярные сита с упорядоченной структурой, на исходную образующую матрицу наносят вещество, содержащее углерод, дополнительно проводят графитизацию, наносят вещество, содержащее нитрид углерода, карбиды металлов, карбид кремния, нитрид бора и вещество, содержащее азот. При получении непористых наноструктурированных материалов вещество наносят в количестве, достаточном для полного заполнения мезопор образующей матрицы, а при получении пористых наноструктурированных материалов вещество наносят в количестве, недостаточном для полного заполнения мезопор образующей матрицы.

Недостатком данного способа является низкий выход углеродных нанотрубок, так как для эффективного их роста необходима высокая температура паров углерода.

Известен генератор кластерного пучка [Б.М.Смирнов. Письма в ЖЭТФ 68, 741, 1998; В.М.Smimov J.Phys. В33, 115, 2000], содержащий генератор потока плазмы, газоразрядную трубку, сопло для расширения плазмы в вакуум, вакуумную камеру с насосами, скимер, источник электронов, ионно-оптическую систему и средства диагностики.

Недостатком известного технического решения является низкая эффективность получения углеродных нанотрубок, так как для их сборки из кластеров нужны зародыши из фуллеренов и наночастиц.

Известно устройство для получения углеродных нанотрубок методом дугового разряда (см. патент RU №2220905 С01В 31/02, публикация от 10.01.2004 г.), содержащее электроды, расположенные соосно и перемещаемые навстречу друг другу водоохлаждаемыми штоками, а для подвода электрической энергии в область дугового разряда оно снабжено скользящими графитовыми токоподводами, выполненными в виде колец, в которых установлены графитовые электроды, электроизолированные от штоков.

Недостатком известного технического решения является низкий выход углеродных нанотрубок требуемого качества с заданными свойствами из-за сложности управления процессом их образования в дуговом разряде.

Наиболее близким из известных технических решений к предлагаемому устройству является устройство для получения металлических кластеров (см. патент RU №2183535 кл. B22F 9/12, 2002 г.), содержащее генератор, сопло, смеситель и сборник кластеров с пеналом.

Недостатком известного технического решения является то, что оно предназначено для получения лишь металлических кластеров.

Задачей данного изобретения является повышение эффективности получения твердофазных наноструктурированных материалов, в частности, углеродных нанотрубок за счет создания оптимальных условий для их роста.

Технический результат, получаемый при осуществлении изобретения, заключается в получении качественных с большим выходом углеродных нанотрубок с возможностью регулирования их структуры и свойств.

Этот технический результат достигается тем, что в способе получения твердофазных наноструктурированных материалов, основанном на нанесении вещества на исходную образующую матрицу, преобразуют наносимое вещество в поток кластеров при детонационном горении многофазной смеси, продукты детонационного горения подвергают газодинамическому охлаждению при их расширении в сверхзвуковом сопле и направляют на исходную образующую матрицу, которую периодически охлаждают и нагревают.

Решение поставленной задачи достигается также тем, что устройство для получения твердофазных наноструктурированных материалов, включающее парогазогенератор исходного вещества, сопло и смеситель, содержит установленный перед соплом газодинамический резонатор для детонационного горения многофазной смеси, которая подается в резонатор из смесителя. Резонатор соединен с парогазогенератором и смесителем. Устройство дополнительно снабжено камерой, содержащей исходную образующую матрицу, размещенную на подложке мишени с регулируемой температурой, скимером, источником электронов, ионно-оптической системой и средствами диагностики.

Схема устройства для получения твердофазных наноструктурированных материалов по предлагаемому способу приведена на чертеже.

Устройство содержит исходную образующую матрицу 1 в камере 2, соединенной соплом 3 с парогазогенератором 4 исходного вещества, скимер 5, источник электронов 6, ионно-оптическую систему 7 и средства диагностики 8. Перед соплом 3 установлен газодинамический резонатор 9, соединенный с парогазогенератором 4 и смесителем 10. Исходная образующая матрица 1 размещена на подложке 11 мишени 12, имеющей систему регулирования температуры 13.

Устройство работает следующим образом. В парогазогенераторе готовят многофазную смесь исходного вещества и под давлением направляют в газодинамический резонатор, в котором смесь в результате ударно-волновых процессов детонирует. Импульс высокого давления в детонационной волне прерывает поступление смеси исходного вещества из парогазогенератора в газодинамический резонатор. В это же время продукты детонационного горения многофазной смеси расширяясь охлаждаются, формируются в кластеры и направляются на мишень с исходной образующей матрицей, на которой происходит образование и рост твердофазных наноструктурированных материалов. С падением давления в газодинамическом резонаторе возобновляется поступление в него многофазной смеси исходного вещества из парогазогенератора и процесс повторяется. Параметры газодинамического резонатора определяют частоту процесса управляемого высокочастотного детонационного горения многофазной смеси.

Таким образом, предлагаемое изобретение позволяет получать качественные углеродные нанотрубки, так как теоретически обосновано и экспериментально подтверждено, что в отличие от нановолокон пиролитического углерода они эффективно формируются из кластеров углеродного пара высокой температуры при наличии зародышей из фуллеренов и наночастиц.

Устройстводляполучениятвердофазныхнаноструктурированныхматериалов,включающеепарогазогенераторисходноговещества,соплоисмеситель,отличающеесятем,чтопередсопломустановленгазодинамическийрезонатордлядетонационногогорениямногофазнойсмеси,подаваемойизсмесителя,соединенныйспарогазогенераторомисмесителем,атакжетем,чтоонодополнительноснабженокамерой,содержащейисходнуюобразующуюматрицу,размещеннуюнаподложкемишенисрегулируемойтемпературой,скимером,источникомэлектронов,ионно-оптическойсистемойисредствамидиагностики.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 255.
20.07.2013
№216.012.57cc

Способ измерения негерметичности изделий

Изобретение относится к области испытательной техники и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением. Техническим результатом является повышение точности измерения негерметичности изделия путем создания последовательности операций,...
Тип: Изобретение
Номер охранного документа: 0002488084
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5a82

Устройство для измерения негерметичности изделий

Изобретение относится к области испытательной техники и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением. Изобретение направлено на увеличение точности определения малых утечек газа из испытуемых изделий, что обеспечивается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002488791
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a83

Устройство для измерения негерметичности изделий

Изобретение относится к области испытательной техники и направлено на увеличение точности определения малых утечек газа из испытуемых изделий, что обеспечивается за счет того, что устройство содержит пузырьковую камеру, дренажную трубку, эталонную емкость, датчики температуры и давления газа в...
Тип: Изобретение
Номер охранного документа: 0002488792
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a84

Способ измерения негерметичности изделий

Изобретение относится к области испытательной техники и может быть использовано для изменения негерметичности изделий, работающих под избыточным давлением. Изобретение направлено на повышение точности измерения негерметичности изделия путем создания последовательности операций, позволяющих...
Тип: Изобретение
Номер охранного документа: 0002488793
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a85

Устройство для измерения негерметичности изделий

Изобретение относится к области испытательной техники и предназначено для измерения негерметичности изделий, работающих под избыточным давлением. Изобретение направлено на увеличение точности определения малых утечек газа из испытуемых изделий, что обеспечивается за счет того, что в состав...
Тип: Изобретение
Номер охранного документа: 0002488794
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a86

Устройство для измерения негерметичности изделий

Изобретение относится к испытательной технике и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением. Изобретение направлено на увеличение точности определения малых утечек газа из испытуемых изделий, что обеспечивается за счет того, что проверку...
Тип: Изобретение
Номер охранного документа: 0002488795
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a87

Способ определения прироста подъемной силы летательного аппарата при внешнем подводе энергии

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов, преимущественно к разработке методов воспроизведения в аэродинамических трубах условий обтекания летательных аппаратов и разработке методов повышения аэродинамического качества летательных аппаратов. Способ...
Тип: Изобретение
Номер охранного документа: 0002488796
Дата охранного документа: 27.07.2013
27.08.2013
№216.012.63bf

Многослойная панель

Изобретение относится к самолетостроению, строительной промышленности и машиностроительной отрасли и касается многослойной панели. Заполнитель по высоте разделен набором сеток, сдвинутых относительно друг друга в шахматном порядке не менее чем на половину зазора между нитями сеток. В...
Тип: Изобретение
Номер охранного документа: 0002491172
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.650e

Измеритель углового положения изделия

Изобретение относится к измерительной технике и предназначено для измерения углового положения изделия. Измеритель содержит два двухосевых микромеханических акселерометра, установленных таким образом, что их одноименные оси чувствительности направлены горизонтально и перпендикулярно, а...
Тип: Изобретение
Номер охранного документа: 0002491507
Дата охранного документа: 27.08.2013
10.10.2013
№216.012.724c

Крыло летательного аппарата

Изобретение относится к авиационной технике. Крыло летательного аппарата состоит из центроплана, консолей. Крыло выполнено с удлинением λ=9,6÷10,5, сужением η=3,5÷4,0 и стреловидностью χ=25÷30°. Передняя и задняя кромки при виде сверху выполнены прямолинейными. Задняя кромка крыла на участке...
Тип: Изобретение
Номер охранного документа: 0002494917
Дата охранного документа: 10.10.2013
Показаны записи 11-20 из 29.
20.12.2014
№216.013.1148

Система очистки воздуха

Изобретение относится к транспортному машиностроению, в частности к системам очистки воздуха на входе судовых газотурбинных двигателей. Система очистки воздуха включает сепаратор с конфузором, горловиной, диффузором и капле-пылеуловителем, установленные в воздуховоде, и устройство для сбора и...
Тип: Изобретение
Номер охранного документа: 0002535847
Дата охранного документа: 20.12.2014
10.08.2015
№216.013.695c

Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового бпла

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит...
Тип: Изобретение
Номер охранного документа: 0002558525
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be8

Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние...
Тип: Изобретение
Номер охранного документа: 0002559182
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.78b8

Способ хранения атомарного водорода

Изобретение относится к химии и водородной энергетике и может быть использовано в транспортном машиностроении. Водород получают в генераторе 1, направляют в приёмник 2, разделяют на два потока 3 и воздействуют на них импульсным магнитным полем с амплитудой магнитной индукции В более 100 гаусс....
Тип: Изобретение
Номер охранного документа: 0002562493
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.90fe

Устройство для получения и хранения атомарного водорода

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и...
Тип: Изобретение
Номер охранного документа: 0002568734
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.9624

Устройство очистки воздуха

Изобретение относится к транспортному машиностроению, в частности к устройствам очистки воздуха, и может быть использовано для судовых энергетических установок при очистке воздуха от морской воды, соли и твердых частиц на входе судовых газотурбинных двигателей. Устройство очистки воздуха...
Тип: Изобретение
Номер охранного документа: 0002570056
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97a0

Способ получения и хранения атомарного водорода

Изобретение относится к области химии и водородной энергетики и может быть использовано в энергетике и транспортном машиностроении. Способ получения и хранения атомарного водорода включает электролиз воды с использованием в электролизной ячейке медного анода и катода из сплава дюральалюминия,...
Тип: Изобретение
Номер охранного документа: 0002570436
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.85ea

Бронебойный боеприпас

Изобретение относится к области вооружения, а именно к бронебойным боеприпасам, в частности к снарядам с реактивным двигателем, запускаемым из ствола орудия. Бронебойный боеприпас содержит гильзу с метательным зарядом и снаряд. Последний включает поддон, закрепленный в нем бронебойный сердечник...
Тип: Изобретение
Номер охранного документа: 0002603688
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9ca4

Способ регистрации вакуумного ультрафиолета

Изобретение относится к области измерительной техники и касается способа регистрации вакуумного ультрафиолета. Способ основан на регистрации вторичного излучения люминесцирующего вещества и заряженных частиц, генерируемых вакуумным ультрафиолетом. В качестве люминесцирующего вещества...
Тип: Изобретение
Номер охранного документа: 0002610522
Дата охранного документа: 13.02.2017
19.01.2018
№218.016.04b8

Летательный аппарат с вертикальным взлетом и посадкой

Изобретение относится к области авиации, в частности к конструкциям летательных аппаратов с вертикальным взлетом и посадкой. Летательный аппарат с вертикальным взлетом и посадкой содержит корпус с верхней и нижней аэродинамическими поверхностями, электрореактивный двигатель с устройством...
Тип: Изобретение
Номер охранного документа: 0002630876
Дата охранного документа: 13.09.2017
+ добавить свой РИД