×
20.03.2019
219.016.e410

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КРУПНОГАБАРИТНЫХ ПОЛУФАБРИКАТОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

№ охранного документа
0002298593
Дата охранного документа
10.05.2007
Аннотация: Изобретение относится к области цветной металлургии и может быть использовано для получения крупногабаритных полуфабрикатов из алюминиевых сплавов, содержащих цирконий, методом прессования. Способ включает отливку слитков, гомогенизацию, охлаждение, нагрев с изотермической выдержкой, деформацию при температурах изотермической выдержки, закалку и старение. Обработке подвергают алюминиевые сплавы, содержащие цирконий и титан, соотношение которых определяют по выражению 0,12≤Ti/(Ti+Zr)≤0,4. Гомогенизацию ведут при температурах на 60-100°С ниже температур солидуса в течение 2-36 часов. Охлаждение проводят до комнатной температуры со скоростью 10-30°С/час. Затем нагревают до температуры 340-410°С и проводят изотермическую выдержку в течение 4-24 часов. Техническим результатом изобретения является повышение уровня прочностных и пластических свойств прессованных крупногабаритных полуфабрикатов, а также повышение стойкости к коррозионному растрескиванию и увеличение выгода годного полуфабрикатов за счет снижения количества внутренних дефектов. 1 табл.

Изобретение относится к области цветной металлургии и может быть использовано для получения крупногабаритных полуфабрикатов из алюминиевых сплавов, содержащих цирконий, методом прессования.

В настоящее время широкое применение находят высокопрочные алюминиевые сплавы, содержащие цирконий, обладающие целым рядом преимуществ по конструкционным и эксплуатационным характеристикам в сравнении с традиционными высокопрочными сплавами, такими как В95пч и Д16ч. Одной из наиболее применяемых в авиастроении продукций металлургического производства являются полуфабрикаты, изготовляемые методом прессования.

Однако для осуществления процесса прессования полуфабрикатов из высокопрочных алюминиевых сплавов крупногабаритные слитки по силовым условиям прессования необходимо нагревать до достаточно высоких температур 420-460°С. Применение таких температур отрицательно сказывается на производительности процесса прессования и на качестве изготавливаемых полуфабрикатов. В существующей технологии скорость истечения металла при прессовании ограничена 0,25-0,4 м/мин. Но при таких скоростях в полуфабрикатах образуется большое количество микро- и макроразрывов, обусловленных сочетанием, с одной стороны, значительных растягивающих напряжений, возникающих в обжимающей части очага деформации при прессовании, и, с другой стороны, низкой прочности и недостаточной пластичности, присущих высокопрочным алюминиевым сплавам при высоких температурах.

Известен способ изготовления крупногабаритных полуфабрикатов из алюминиевых сплавов, включающий прессование заготовки с прямым истечением металла, закалку с последующим естественным или искусственным старением. Перед прессованием заготовку подвергают гомогенизации при температуре 460-500°С в течение 24-36 часов (Справочное руководство. Алюминиевые сплавы. Производство полуфабрикатов из алюминиевых сплавов. М.: Металлургия, 1971, с.209).

Недостатком известного способа является довольно низкая производительность процесса прессования и наличие значительного количества внутренних дефектов.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является способ изготовления прессованных полуфабрикатов из высокопрочных алюминиевых сплавов, включающий гомогенизацию, гетерогенизационный отжиг при температуре минимальной устойчивости твердого раствора, охлаждение до комнатной температуры, затем вновь нагрев до 400-420°С, прессование при этой температуре, закалку и старение (см. Технология легких сплавов. М.: ВИЛС, 1983, №6, с.43-46, прототип).

Повышение производительности в данном способе обусловливается созданием перед прессованием за счет распада пересыщенного твердого раствора гетерогенизированной структуры, обеспечивающей повышенную пластичность слитка.

Недостатком известного способа является то, что для нагрева под прессование крупногабаритных слитков требуется достаточно продолжительное время, в течение которого происходит распад гетерогенизированной структуры и повышение пластичности слитка, что снижает производительность процесса. Кроме того, недостатком известного способа является низкий выход годного, поскольку при прессовании при повышенных температурах возрастает склонность сплавов к межзеренной деформации и образованию на границах зерен расслоений, что приводит к повышению внутренних дефектов в полуфабрикатах.

Задачей, на решение которой направлено данное изобретение, является повышение уровня прочностных и пластических свойств прессованных крупногабаритных полуфабрикатов, а также повышение стойкости к коррозионному растрескиванию и увеличение выхода годного полуфабрикатов за счет снижения количества внутренних дефектов.

Поставленная задача решается тем, что в способе изготовления крупногабаритных полуфабрикатов из алюминиевых сплавов, включающем отливку слитков, гомогенизацию, охлаждение, нагрев, изотермическую выдержку, деформацию при температурах изотермической выдержки, закалку и старение, согласно изобретению используют алюминиевые сплавы, содержащие цирконий и титан, соотношение которых определяют по выражению 0,12≤Ti/(Ti+Zr)≤0,4, гомогенизацию ведут при температурах на 60-100°С ниже температур солидуса в течение 2-36 часов, охлаждают до комнатной температуры со скоростью 10-30°С/час, нагревают до температуры 340-410°С, проводят изотермическую выдержку в течение 4-24 часов и окончательно деформируют при этих температурах.

Содержание в сплаве титана и циркония в пределах заявленного соотношения обеспечивает получение однородной макроструктуры с отсутствием первичных интерметаллидов Al3Ti(Zr). При значениях менее 0,12 образуется неоднородная, с участками крупного зерна, структура. При значениях более 0,4 выделяются интерметаллиды. Эти факторы способствуют неоднородности деформации и образованию большого количества внутренних дефектов.

В результате гомогенизации при температуре на 60-100°С ниже температур солидуса образуется структура с оптимальным количеством выделений алюминий-циркониевой фазы, обеспечивающая резкое повышение пластичности сплава. Проведение гомогенизации ниже температур солидуса менее чем на 60°С приводит к значительному снижению пластичности сплава, а более чем на 100°С - не обеспечивает выравнивание концентрации твердого раствора по объему зерен.

Время изотермической выдержки 4-24 часов при температурах 340-410°С обеспечивает получение как оптимального количества, так и размеров частиц алюминий-циркониевой фазы.

Скорость охлаждения после гомогенизации в пределах 10-30°С/час обеспечивает дисперсное выделение избыточных фаз. Более низкие скорости охлаждения могут привести к огрублению частиц алюминий-циркониевой фазы, а более высокие - к некоторой подзакалке слитка и снижению его пластичности. Данные скорости охлаждения соответствуют естественному охлаждению алюминиевых сплавов при температуре окружающей среды 10-30°С.

Последующий нагрев до температур 340-410°С определяется тем, что при этих температурах сплавы сохраняют высокую пластичность, созданную предыдущей гомогенизацией, и имеют достаточно низкое сопротивление деформированию. При температурах ниже 340°С значительно возрастает сопротивление сплава деформированию, а при температурах свыше 410°С падает пластичность сплавов.

С этой же целью установлен интервал изотермической выдержки после нагрева. Выдержка менее 4 часов не дает равномерного нагрева крупногабаритных слитков, а более 24 часов - приводит к огрублению алюминий-циркониевой фазы и снижению пластичности слитков.

Предлагаемый способ опробован при изготовлении крупногабаритных полуфабрикатов с площадью поперечного сечения 808 см2 и длиной 12 м из слитка диаметром 765 мм алюминиевого сплава 1973, содержащего цирконий и титан.

Конкретные технологические режимы осуществления способа и полученные при этом результаты приведены в таблице (примеры №1, 2, 3).

Для получения сравнительных данных приведены результаты, полученные при изготовлении полуфабрикатов по способу-прототипу (пример №4).

Использование предлагаемого способа позволяет получать крупногабаритные полуфабрикаты из алюминиевых сплавов с более высоким по сравнению с прототипом комплексом эксплуатационных свойств. При высоких прочностных и пластических характеристиках полуфабрикаты имеют большую стойкость к коррозионному растрескиванию, а также более чем в 2,5 раза уменьшается количество дефектов на единицу изделия.

ТАБЛИЦА
№ п/пРежим обработкиМеханические свойстваСреднее количество дефектов на 1 изделие
σв МПаσ0,2, МПаδ, %РСК, балл
1Ti/(Zr+Ti)=0,12. Гомогенизация при температуре (Т) на 60°С ниже температуры солидуса (Tc) в течение 2 часов, охлаждение со скоростью 10°С/час, нагрев до 340°С, изотермическая выдержка 4 часа, прессование, закалка, старение58058512,03,06
2Ti/(Zr+Ti)=0,4. Гомогенизация при Т на 100°С ниже Tc в течение 36 часов, охлаждение со скоростью 30°С/час, нагрев до 410°С, выдержка 24 часа, прессование, закалка, старение61056011,62,011
3Ti/(Zr+Ti)=0,26. Гомогенизация при Т на 80°С ниже Tc в течение 18 часов, охлаждение со скоростью 20°С/час, нагрев до 380°С, выдержка 14 часов, прессование, закалка, старение59054011,92,38
4Прототип58553011,03,528

Способизготовлениякрупногабаритныхполуфабрикатовизалюминиевыхсплавов,включающийотливкуслитков,гомогенизацию,охлаждение,нагревсизотермическойвыдержкой,деформациюпритемпературахизотермическойвыдержки,закалкуистарение,отличающийсятем,чтоиспользуюталюминиевыесплавы,содержащиецирконийититан,соотношениекоторыхопределяютповыражению0,12≤Ti/(Ti+Zr)≤0,4,гомогенизациюведутпритемпературахна60-100°Снижетемпературсолидусавтечение2-36ч,охлаждаютдокомнатнойтемпературысоскоростью10-30°С/ч,нагреваютдотемпературы340-410°Сипроводятизотермическуювыдержкувтечение4-24ч.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 69.
09.05.2019
№219.017.4db8

Вибрационный грохот для рассева материала пористой неоднородной формы

Изобретение относится к грохотам, применяемым для рассева материалов, а именно для рассева измельченного материала пористой неоднородной формы, например титановой или циркониевой губки. Вибрационный грохот для рассева материала пористой неоднородной формы включает корпус, вибровозбудитель,...
Тип: Изобретение
Номер охранного документа: 0002333044
Дата охранного документа: 10.09.2008
18.05.2019
№219.017.5666

Устройство для контроля металлотермической реакции восстановления титана

Изобретение относится к устройствам для контроля металлотермической реакции восстановления металла и может быть использовано в системах управления технологическими процессами в металлургической промышленности. В качестве датчиков индуцированного магнитного поля используются витки нагревателя,...
Тип: Изобретение
Номер охранного документа: 0002393438
Дата охранного документа: 27.06.2010
18.05.2019
№219.017.5671

Способ подготовки карналлитового сырья к процессу электролитического получения магния и хлора

Изобретение относится к цветной металлургии, а именно к способу подготовки хлормагниевого сырья методом обезвоживания к процессу электролитического получения магния и хлора. Способ включает подачу сырья в многокамерную печь кипящего слоя, первую стадию обезвоживания сырья путем...
Тип: Изобретение
Номер охранного документа: 0002399588
Дата охранного документа: 20.09.2010
18.05.2019
№219.017.579f

Устройство для резки блока тугоплавкого металла

Изобретение относится к цветной металлургии и может быть использовано при резке блока тугоплавкого металла, например блока губчатого титана или циркония. Устройство содержит станину, в которой смонтированы приемный стол для размещения блока, механизм перемещения зажимов в виде ползуна с...
Тип: Изобретение
Номер охранного документа: 0002371307
Дата охранного документа: 27.10.2009
18.05.2019
№219.017.57bf

Способ переработки карналлитовой пыли из циклонов печи кипящего слоя

Изобретение относится к цветной металлургии, а именно к подготовке карналлитового сырья к электролизу. Способ переработки карналлитовой пыли из циклонов печи кипящего слоя включает подачу сырья в печь кипящего слоя, его обезвоживание, улавливание пыли в циклонах с последующим извлечением ее из...
Тип: Изобретение
Номер охранного документа: 0002370440
Дата охранного документа: 20.10.2009
18.05.2019
№219.017.58b0

Способ обезвоживания карналлитового сырья в трехкамерной печи кипящего слоя

Изобретение относится к обезвоживанию карналлитового сырья, используемого при электролитическом получении магния. Обезвоживание карналлитового сырья проводят в трехкамерной печи кипящего слоя. Третья камера печи разделена перегородками с переточными окнами на полукамеры. Обезвоживание в первой...
Тип: Изобретение
Номер охранного документа: 0002323880
Дата охранного документа: 10.05.2008
18.05.2019
№219.017.59be

Способ вырезки контура металлических изделий

Изобретение относится к способам струйной резки и может быть использовано для вырезки контура металлических изделий, полученных преимущественно из труднодеформируемых металлов и сплавов методами обработки давлением. Осуществляют закрепление изделия в ложементе рабочего координатного стола...
Тип: Изобретение
Номер охранного документа: 0002470769
Дата охранного документа: 27.12.2012
18.05.2019
№219.017.5a8e

Способ определения содержания водорода в алюминиевых сплавах

Изобретение относится к области анализа газов в металлах. Способ включает отбор расплава, изготовление цилиндрического образца и определение количества содержащегося в сплаве водорода. Отбор расплава осуществляют заливкой порции жидкого металла в металлическую изложницу цилиндрического сечения...
Тип: Изобретение
Номер охранного документа: 0002435160
Дата охранного документа: 27.11.2011
18.05.2019
№219.017.5b4b

Способ изготовления холоднодеформируемых труб из двухфазных сплавов на основе титана

Изобретение относится к области металлургии, а именно к производству высокопрочных труб из двухфазных сплавов на основе титана, преимущественно из псевдо-α и (α+β)-сплавов. Способ изготовления холоднодеформированных труб из двухфазных сплавов на основе титана включает выплавку слитка, ковку...
Тип: Изобретение
Номер охранного документа: 0002463376
Дата охранного документа: 10.10.2012
18.05.2019
№219.017.5b92

Способ изготовления промежуточных заготовок из (α+β)-титановых сплавов

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении методом горячего деформирования промежуточных заготовок из титановых сплавов. Заготовку, полученную путем деформирования слитка после его нагрева до температуры на 100÷200°C выше температуры...
Тип: Изобретение
Номер охранного документа: 0002468882
Дата охранного документа: 10.12.2012
Показаны записи 1-3 из 3.
19.04.2019
№219.017.2f39

Сплав на основе алюминия

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия для изготовления кованых, прессованных и катаных полуфабрикатов, используемых в качестве конструкционного материала в изделиях авиастроения. Сплав содержит следующие компоненты, мас.%: цинк...
Тип: Изобретение
Номер охранного документа: 0002352668
Дата охранного документа: 20.04.2009
18.05.2019
№219.017.5a8e

Способ определения содержания водорода в алюминиевых сплавах

Изобретение относится к области анализа газов в металлах. Способ включает отбор расплава, изготовление цилиндрического образца и определение количества содержащегося в сплаве водорода. Отбор расплава осуществляют заливкой порции жидкого металла в металлическую изложницу цилиндрического сечения...
Тип: Изобретение
Номер охранного документа: 0002435160
Дата охранного документа: 27.11.2011
19.06.2019
№219.017.8bcc

Способ получения лигатуры алюминий-титан-бор

Изобретение относится к металлургии и может быть использовано для получения модифицирующих лигатур при приготовлении алюминиевых сплавов методом введения в расплав алюминия борсодержащих и титансодержащих веществ или составов. Способ включает плавление первичного алюминия, порционное введение в...
Тип: Изобретение
Номер охранного документа: 0002466202
Дата охранного документа: 10.11.2012
+ добавить свой РИД