×
20.03.2019
219.016.e33e

Результат интеллектуальной деятельности: Способ эксплуатации пилотируемой орбитальной станции

Вид РИД

Изобретение

№ охранного документа
0002673215
Дата охранного документа
22.11.2018
Аннотация: Изобретение относится к управлению полётом и жизнеобеспечению экипажей космических аппаратов (КА), преимущественно орбитальных станций. Способ включает выделение углекислого газа из воздуха обитаемых отсеков КА путем адсорбции, а также последующую десорбцию, охлаждение (с частичным сжижением) и компримирование этого газа. В таком виде углекислый газ хранят на борту КА, а перед коррекцией орбиты расчетную порцию газа нагревают до заданной температуры, контролируя его давление. Затем порцию газа сбрасывают в окружающее КА пространство через сопло двигателя коррекции. Техническим результатом является возможность увеличения массы полезного груза, доставляемого на КА (орбитальную станцию), а также повышение безопасности эксплуатации.

Изобретение предназначено для использования на борту пилотируемых космических аппаратов (КА), особенно орбитальных станций (ОС) с большим экипажем.

Аналогом данного предложения может служить концепция орбитальной заправочной станции, где ракетное топливо производится на орбите Земли (David Brandt-Erichsen «Orbital Propellant Depots: Building the Interplanetary Highway». Posted on August 17, 2011, NSS Website Updates, Space Transportation, Technology. Wikipedia). Компонентами топлива здесь служат водород и кислород, которые получаются электролизом воды, доставляемой с Земли. Импульсные реактивные двигатели такой ОС, обеспечивающие коррекцию ее орбиты, работают, естественно, на этих же компонентах топлива (Jonathan A. Goff, Bernard F. Kutter and Frank Zeglerlas, Dallas Bienhoff, Frank Chandler, Jeffrey Marchetta «Realistic near-term propellant depots: Implementation of a critical spasefaring capability)). AIAA SPACE 2009 Conference & Exposition 14-17 September 2009, Pasadena, California, AIAA 2009 - 7656). В ближайшей перспективе рассматриваются концепции спутников-танкеров для орбитальной дозаправки обычным ракетным топливом («NASA работает над созданием автоматической газовой космической станции», «Новости космонавтики», июль, 2014, AstroNews.ru). Маневрирование таких станций также предполагается осуществлять за счет их собственного ресурса, путем импульсного реактивного воздействия. Импульсное реактивное воздействие на КА является стандартным способом осуществления его маневров во время полета. При этом для различных операций сила такого воздействия может отличаться на порядок. Например, двигательная установка станции «Мир» включала два корректирующих двигателя с тягой по 300 кг и 32 ориентационных двигателя с тягой 13 кг (engine.aviaport.ru «Двигатели комплекса Мир»). Таким образом, орбитальные «заправки» обеспечивают свой полет за счет собственного «газового ресурса», т.е. газов, произведенных на ее борту.

Недостатком аналогов является технологическая сложность операций с ракетными топливами, а также их взрывоопасность. Кроме того, такие концепции обычно не предусматривает присутствия на борту станции космонавтов (в значительной степени из-за опасности производства).

Более близким к данному предложению (прототипом) является существующая в настоящее время методика обеспечения длительных полетов пилотируемой международной космической станции (МКС), когда снижение станции, обусловленное ее торможением в верхних слоях атмосферы, периодически компенсируется импульсами реактивной тяги. Последние генерируются за счет сжигания топлива, доставляемого с Земли (с помощью двигателей кораблей доставки, либо собственных корректирующих двигателей станции («Орбита международой космической станции МКС», www.astro-azbuka.ru). При этом на МКС, так же, как на орбитальной заправке, вырабатывается собственный газовый ресурс - это газообразные отходы жизнедеятельности экипажа, состоящие в основном из углекислого газа (УГ). Обычно этот «газовый ресурс» МКС достаточно велик. Один человек в среднем «производит» в сутки 0,96 кг УГ (Гузенберг А.С. и др. «Выбор комплекса жизнеобеспечения для экипажей долговременных космических станций», Космическая техника и технологии, с. 72, №1(8), 2015 г.). В зависимости от численности экипажа, на борту ОС за короткое время можно собрать десятки килограммов углекислоты. Несмотря на это, в настоящее время УГ просто выбрасывают в окружающее пространство. Так УГ утилизировался на станции «Мир», так же происходит и на МКС (как на Российском сегменте, так и на американском). Выделение УГ из воздуха при очистке последнего производится за счет адсорбции УГ на регенерируемых сорбентах («Регенерация воды и атмосферы на космических станциях…» Л.С. Бобе и др. 2010 г., доклад НИИХиммаш, niichimmash.ru, или A.M. Генин и др. «Человек в космосе», Гос. издательство медицинской литературы, Москва, 1963 г., с. 32). В зависимости от типа используемого сорбента его регенерация (т.е. десорбция УГ) производится либо путем сброса адсорбированных газов в вакуум (на Российском сегменте), либо путем прокаливания сорбента (на американском сегменте). В любом случае при существующей методике полета МКС за борт бесполезно выбрасываются десятки килограмм УГ, при этом одновременно на станцию регулярно доставляют специальное топливо для ее двигателей коррекции.

Необходимость доставки этого топлива с Земли при одновременном «неиспользовании» ее собственного газового ресурса и является главным недостатком прототипа.

Задача настоящего предложения - снизить потребность пилотируемой ОС в поставках ракетного топлива за счет применения газообразных отходов жизнедеятельности (ГОЖ) в качестве рабочего тела ее корректирующих двигателей.

Техническим результатом изобретения является возможность увеличить массу других полезных грузов, доставляемых на станцию, а также повышение безопасности эксплуатации ОС.

Технический результат достигается тем, что в способе эксплуатации пилотируемой орбитальной станции, включающем выделение углекислого газа из воздуха ее обитаемых отсеков путем адсорбции и последующую десорбцию этого газа со сбросом его в окружающее пространство, а также коррекцию орбиты станции с помощью импульсов реактивной тяги, десорбированный углекислый газ охлаждают и сжимают, полученный компримированный и частично сжиженный углекислый газ собирают и хранят в таком виде на борту станции, а перед коррекцией ее орбиты расчетную порцию углекислого газа, необходимую для получения заданного импульса реактивной тяги, нагревают до заданной температуры, контролируя при этом его давление, после чего сбрасывают в окружающее пространство через сопло двигателя коррекции.

Суть предложения состоит в следующем. Для создания реактивной тяги необходимо во-первых, рабочее тело (газ) для реактивного двигателя и, во-вторых, энергия для нагрева этого газа. И то, и другое всегда производится на пилотируемой станции: газы - системой жизнеобеспечения, энергия - ее солнечными батареями.

В настоящее время на МКС масса выбрасываемых в вакуум газообразных отходов в расчете на одного человека превышает 1 кг/сутки (0,96 кг УГ и 0,11 кг водорода) (Гузенберг А.С. и др. «Выбор комплекса жизнеобеспечения для экипажей долговременных космических станций». Ж.: «Космическая техника и технологии», №1(8), с. 68, 2015 г.). Примером импульсной водородной реактивной двигательной установки КА может служить патент RU 2605163, опубл. 20.12.2016, бюл. №35, МПК: F02K 99/00 (2006.01), B64G 1/40 (2006.01). УГ традиционно применяется для создания реактивной тяги в моделировании (Калина И. «Двигатели для спортивного моделизма». М., ДОСААФ, 1983 г.). В последние годы УГ используют также для управления микроспутниками («Cold Gas Propulsion System - an Ideal Choice for Remote Sensing Small Satellites)), Remote Sensing - Advanced Techniques and Platform, 2012, p.447, www.intechopen.com).

УГ имеет большой молекулярный вес и, соответственно, низкую скорость звука и удельную энергию. Из-за этого реактивная тяга углекислотного двигателя существенно ниже (при прочих равных условиях), чем у двигателя, работающего на легких газовых смесях. Однако технологически УГ очень удобен - он легко сжижается, и хранить его на ОС гораздо проще. Температура в его тройной точке (около минус 60°C) примерно соответствует температуре конструкций на теневой стороне станции, а давление составляет всего 6 атм. Все это, а также возможность создать большой запас этого газа в процессе полета, делает целесообразным применение УГ в качестве рабочего тела корректирующих двигателей ОС.

Таким образом, благодаря уникальным свойствам УГ, почти идеально соответствующим температурным условиям на борту ОС, возможно использование простейших технологических схем (как например в «2015, JOSS, Vol. 4, No2, p.375, Stevenson T.et.al. «Design and Testing of a Cold Gas Thruster for an Interplanetary CubeSat Mission» или «Proceedings of the Estonian Academy of Sciences, 2014,63,2S, p.280, Urmas Kvell et. al. Nanosatellite orbit control using MEMS cold gas thrusters»).

Реализовать предложение можно следующим образом.

В процессе эксплуатации пилотируемой орбитальной станции, как обычно, из воздуха ее обитаемых отсеков выделяют УГ путем его адсорбции на твердом сорбенте и последующей десорбции в процессе периодической очистки сорбента, например, путем его нагрева электронагревателем, находящимся в адсорбере. Десорбированный горячий газ предварительно охлаждают до температуры ниже 32°C (критическая температура УГ). Охлаждение газа можно осуществить, например, за счет его контакта с конструктивными элементами станции, размещенными на ее теневой стороне. Охлажденный УГ сжимают (например, компрессором) до давления выше 6 атм. (минимальное критическое давление) и повторно охлаждают контактным способом до его сжижения. Полученную жидкую углекислоту собирают в емкости и хранят в таком виде под давлением на борту пилотируемой ОС. В дальнейшем жидкая углекислота может использоваться также в качестве противопожарного средства.

Перед включением двигателя коррекции ОС расчетную порцию углекислого газа, необходимую для получения заданного импульса реактивной тяги, из накопителя перепускают в газогенератор - пространство замкнутое, или частично замкнутое, где газ нагревается, а его жидкая фракция (если она присутствует) испаряется т.е. образуется рабочее тело двигателя коррекции. Таким газогенератором может служить, например, камера самого двигателя, в частности, электронагревного или электродугового типа. В ней под действием протекающего электрического тока УГ нагревают до заданной, ограниченной термостойкостью материалов двигателя, температуры. В нужный момент этот УГ сбрасывают в окружающее пространство через сопло двигателя коррекции. В результате создается импульс реактивной тяги. При необходимости вышеупомянутые операции, производимые перед коррекцией орбиты пилотируемой станции, повторяют.

Оценим максимальный импульс тяги, который может создать истекающий из двигателя УГ в течение года работы на орбите. Будем считать, что на ОС находятся 6 человек. Поскольку, как указывалось, один человек производит в сутки 0,96 кг УГ, в год весь экипаж произведет 2102 кг УГ. При использовании электронагревного двигателя температура в его камере может составлять 2200 К (С.Д. Лесков и др., Электрические ракетные двигатели, Машиностроение, 1975 г., с. 122). При этой температуре скорость истечения в вакуум УГ с молекулярной массой 44 составляет 1900 м/с. (М.В. Добровольский, Жидкостные ракетные двигатели, М., Машиностроение, 1968 г., с. 17). Полный импульс, равный произведению массы рабочего тела на скорость истечения, составляет 4 млн. Н⋅с. Если масса ОС составляет, к примеру, 40 т, ее скорость при таком импульсе может увеличиться на 100 м/с.

Для того, чтобы придать ОС заданный импульс тяги I, следует направить в двигатель порцию УГ массой m, равной m=I/W, где W - скорость истечения газа из сопла двигателя. К примеру, для создания импульса тяги 1000 Н⋅с при скорости истечения 1900 м/с, необходимо направить в двигатель 0,53 кг УГ.

Обычно на ОС применяют двигатели на топливе гептил-амил с удельной тягой 3100 м/с. Предлагаемый способ позволяет сэкономить

(2102 кг⋅1900 м/с)/3100 м/с = 1288 кг традиционного топлива в год.

Способ эксплуатации пилотируемой орбитальной станции, включающий выделение углекислого газа из воздуха ее обитаемых отсеков путем адсорбции и последующую десорбцию этого газа со сбросом его в окружающее пространство, а также коррекцию орбиты станции с помощью импульсов реактивной тяги, отличающийся тем, что десорбированный углекислый газ охлаждают и сжимают, полученный компримированный и частично сжиженный углекислый газ собирают и хранят в таком виде на борту станции, а перед коррекцией ее орбиты расчетную порцию углекислого газа, необходимую для получения заданного импульса реактивной тяги, нагревают до заданной температуры, контролируя при этом его давление, после чего сбрасывают в окружающее пространство через сопло двигателя коррекции.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 111.
10.08.2019
№219.017.bd68

Система хранения и подачи иода (варианты) и способ определения расхода и оставшейся массы иода в ней

Предложенная группа изобретений относится к области электроракетных двигателей (ЭРД), в частности к системам хранения и подачи в них рабочего тела. Система хранения и подачи иода (по первому варианту) содержит сообщенную с электроракетным двигателем трубопроводом с установленным на нем клапаном...
Тип: Изобретение
Номер охранного документа: 0002696832
Дата охранного документа: 06.08.2019
12.09.2019
№219.017.ca4f

Оптическая система формирования и наведения лазерного излучения

Изобретение может быть использовано для доставки мощного излучения на воздушные и космические объекты и в лазерных локационных систем наведения. Оптическая система включает устройство сканирования, передающий лазерный модуль с оптоволоконным выводом, блок фокусировки, включающий коллимирующую...
Тип: Изобретение
Номер охранного документа: 0002699944
Дата охранного документа: 11.09.2019
17.10.2019
№219.017.d63c

Устройство для забора проб космонавтом в скафандре с внешней поверхности гермооболочки космического объекта

Изобретение относится к космической технике, в частности к инструментам и приспособлениям, используемым космонавтом в процессе внекорабельной деятельности, а также в наземных условиях оператором в обычной одежде для широкого спектра объектов. Устройство для забора проб космонавтом в скафандре с...
Тип: Изобретение
Номер охранного документа: 0002703208
Дата охранного документа: 15.10.2019
22.11.2019
№219.017.e4c9

Способ определения ориентации космического аппарата по сигналам навигационных спутников

Изобретение относится к области космической техники. Способ определения ориентации космического аппарата по сигналам навигационных спутников содержит этапы, на которых: включают излучение радиосигналов навигационными спутниками с известными параметрами орбиты; формируют и выдают команды на...
Тип: Изобретение
Номер охранного документа: 0002706638
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e4e4

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к области космической техники. Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами содержит этапы, на которых: - включают ориентацию солнечной батареи нормалью к рабочей поверхности на Солнце; - измеряют ток...
Тип: Изобретение
Номер охранного документа: 0002706643
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e547

Стыковочный механизм космического аппарата

Изобретение относится к космической технике, в частности к стыковочным устройствам космических аппаратов. Стыковочный механизм космического аппарата содержит подвижный корпус, связанный с основанием стыковочного механизма двухстепенным вращательным шарниром и боковым амортизатором с...
Тип: Изобретение
Номер охранного документа: 0002706639
Дата охранного документа: 19.11.2019
08.12.2019
№219.017.eb97

Устройство для опоры, используемое преимущественно космонавтом в скафандре в реальных и моделируемых условиях гипогравитации на поверхности луны и марса

Изобретение относится к космической технике, в частности к инструментально-техническим средствам обеспечения действий космонавта в скафандре. Устройство для опоры, используемое преимущественно космонавтом в скафандре, содержит телескопический стержень с заостренным наконечником и кольцом на...
Тип: Изобретение
Номер охранного документа: 0002708133
Дата охранного документа: 04.12.2019
10.12.2019
№219.017.eba7

Рукоятка ручного инструмента, используемая преимущественно космонавтом в скафандре в реальных и моделируемых условиях микрогравитации, гипогравитации на поверхности луны и марса

Изобретение относится к космической технике, а именно к ручным инструментам, используемым космонавтом в скафандре. Рукоятка ручного инструмента, используемая космонавтом в скафандре, выполнена в виде стержня. На стержне посредством клеммовых соединений установлены параллельные между собой и...
Тип: Изобретение
Номер охранного документа: 0002708405
Дата охранного документа: 06.12.2019
24.12.2019
№219.017.f16e

Пластырь для ремонта экранно-вакуумной теплоизоляции космического объекта, используемый космонавтом в процессе внекорабельной деятельности, и способ его эксплуатации

Группа изобретений относится к средствам и способам внекорабельной деятельности (ВКД) и м. б. использована при моделировании ВКД на Земле. Пластырь содержит полотнище (П), натянутое на жесткий замкнутый каркас, растяжки, присоединенные к углам П, и ручку, расположенную в центре П. П выполнено...
Тип: Изобретение
Номер охранного документа: 0002709977
Дата охранного документа: 23.12.2019
31.01.2020
№220.017.fb55

Комбинированный фиксатор объектов, преимущественно в невесомости

Изобретение относится к инструментам и приспособлениям, используемым главным образом космонавтами в условиях невесомости. Фиксатор содержит достаточно пластичную проволоку в неметаллической оболочке с кольцами на концах. Кольца соизмеримы с размерами пальцев наддутой перчатки скафандра...
Тип: Изобретение
Номер охранного документа: 0002712363
Дата охранного документа: 28.01.2020
Показаны записи 21-28 из 28.
05.12.2018
№218.016.a333

Способ создания реактивной тяги пилотируемого космического аппарата

Изобретение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА). Способ создания реактивной тяги пилотируемого космического аппарата, включающий...
Тип: Изобретение
Номер охранного документа: 0002673920
Дата охранного документа: 03.12.2018
19.04.2019
№219.017.3089

Электрохимический генератор и способ его эксплуатации

Изобретение относится к энергогенерирующим устройствам и может быть использовано в энергетических установках с электрохимическими генераторами. Согласно изобретению электрохимический генератор включает батарею топливных элементов, магистрали топлива и окислителя с клапанами подачи и продувки и...
Тип: Изобретение
Номер охранного документа: 0002322731
Дата охранного документа: 20.04.2008
29.04.2019
№219.017.436a

Энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов и способ ее эксплуатации

Изобретение относится к энергоустановкам с электрохимическими генераторами (ЭХГ) на основе водородно-кислородных топливных элементов (ТЭ). Техническим результатом является повышение надежности включения и работоспособности ЭХГ при низких температурах окружающей среды. Согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002417487
Дата охранного документа: 27.04.2011
10.07.2019
№219.017.adb0

Автономная система энергопитания и способ ее эксплуатации

Изобретение относится к области автономных систем энергопитания (АСЭП) отдельных объектов, удаленных от линии электропередачи, а именно к АСЭП, включающим возобновляемые источники энергии в качестве внешнего источника электроэнергии, электрохимический генератор (ЭХГ), электролизер и баллоны для...
Тип: Изобретение
Номер охранного документа: 0002371813
Дата охранного документа: 27.10.2009
20.04.2023
№223.018.4bab

Магнитоплазменный электрореактивный двигатель

Изобретение относится к космической технике, точнее к электрореактивным двигателям, и может быть использовано в космических аппаратах. Магнитоплазменный электрореактивный двигатель содержит корпус, хотя бы по одному кольцевому магниту и радиочастотной антенне, подключенной к генератору...
Тип: Изобретение
Номер охранного документа: 0002764496
Дата охранного документа: 17.01.2022
15.05.2023
№223.018.5ca7

Суборбитальный космический корабль и способ его торможения в атмосфере

Группа изобретений относится к управлению и конструкции космических кораблей (КК) многократного применения с вертикальным взлетом и посадкой, которые могут быть использованы для космического туризма, высотных парашютных прыжков и др. Суборбитальный КК содержит раму, посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002759358
Дата охранного документа: 12.11.2021
15.05.2023
№223.018.5ca8

Суборбитальный космический корабль и способ его торможения в атмосфере

Группа изобретений относится к управлению и конструкции космических кораблей (КК) многократного применения с вертикальным взлетом и посадкой, которые могут быть использованы для космического туризма, высотных парашютных прыжков и др. Суборбитальный КК содержит раму, посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002759358
Дата охранного документа: 12.11.2021
17.06.2023
№223.018.7ed8

Способ создания аккумулятора тепла

Изобретение относится к устройствам для хранения тепла и может быть использовано в автономном солнечном электротеплоснабжении бытовых и производственных помещений, преимущественно лунной базы. Способ создания аккумулятора тепла, преимущественно для лунной базы, состоит в создании полости в...
Тип: Изобретение
Номер охранного документа: 0002774728
Дата охранного документа: 22.06.2022
+ добавить свой РИД