×
15.03.2019
219.016.e10e

Результат интеллектуальной деятельности: ПРИНУДИТЕЛЬНОЕ ОСУЩЕСТВЛЕНИЕ ПАССИВНОСТИ В ЭЛЕКТРОННЫХ КОМПОНЕНТАХ ПУТЕМ МОДАЛЬНЫХ ВОЗМУЩЕНИЙ

Вид РИД

Изобретение

№ охранного документа
0002450348
Дата охранного документа
10.05.2012
Аннотация: Изобретение относится к средствам моделирования линейных свойств электрического компонента. Техническим результатом является повышение точности предсказания технически релевантных линейных электрических свойств электрического компонента. Электрический компонент, имеющий порты и обладающий линейными электрическими свойствами, которые охарактеризованы в матрице, являющейся матрицей импедансов, матрицей полных проводимостей или матрицей рассеяния электрического компонента и связывающей напряжение, приложенное к портам, с током, проходящим через эти порты. Электрический компонент обладает пассивностью, определяемой путем возмущения параметров до возмущенного набора параметров при обеспечении того, что этот возмущенный набор параметров соответствует функции условия в булевых значениях. 15 з.п. ф-лы.

Область техники, к которой относится изобретение

Изобретение относится к способу моделирования линейных свойств электрического компонента с принудительным осуществлением пассивности.

Уровень техники

Остаточное возмущение (OB) (RP) часто используется в качестве средства для принудительного осуществления пассивности в моделях, описывающих линейные свойства электрических компонентов. Один известный подход ОВ использует квадратичное программирование (КП) (QP) для решения задачи по методу наименьших квадратов с ограничениями.

В качестве примера рассмотрим модель с вычетами в полюсах для матрицы полных Y проводимостей

где s есть угловая частота, Rm при m=1 до N являются матрицами, независимыми от s (N представляет собой число полюсов или резонансов, принятых во внимание), D есть матрица, независимая от s, а am при m=1 до N являются комплексными угловыми частотами полюсов или резонансов.

Параметры модели должны быть возмущены таким образом, чтобы возмущенная модель удовлетворяла критерию пассивности в том, что действительная часть собственных значений Y является положительной для всех частот, т.е.

Возмущение должно быть сделано так, чтобы минимизировать изменение в исходной модели, т.е.

Традиционный путь обращения с уравнением (2b) состоит в минимизации изменения для ΔY в смысле наименьших квадратов.

Сущность изобретения

Задача, решаемая настоящим изобретением, состоит в обеспечении способа, имеющего более высокую точность.

Эта задача решается способом по п.1 формулы изобретения. Данное изобретение основано на понимании того, что слабость подхода в уровне техники заключается в том, что малые собственные значения Y могут легко исказиться за счет возмущения (ΔY). Изобретение преодолевает эту проблему путем «модального возмущения», т.е. путем нахождения приближенного решения для этой задачи:

где F есть функция, описывающая зависимость матрицы Y от независимой переменной s, тогда как p1,…,pK являются параметрами (которые должны возмущаться) модели. ti есть число независимых портов электрического компонента (устройства).

Для модели с вычетами в полюсах функция F выражается уравнением (1), а параметры p1,…, pK могут, к примеру, соответствовать элементам матриц Rm и D.

В дополнение к уравнению (3) требуется ограничение, гарантирующее пассивность матрицы Y, аналогичное уравнению (2а). Согласно настоящему изобретению обобщенный вариант уравнения (2а) можно выразить за счет требования, чтобы возмущенный набор параметров p1+Δp1,…, pK+ΔpK соответствовал подходящей функции C условия в булевых значениях:

Приближенное решение для n векторных уравнений (3) преимущественно находят путем минимизации суммы квадратов каждой координаты векторов каждого из упомянутых уравнений при условии уравнения (4).

Ограничение, выраженное функцией С условия, может быть, например, ограничением согласно уравнению (2а). Но оно может также быть и другим подходящим ограничением, таким, к примеру, какое получается при использовании собственных значений матрицы гамильтониана, как, к примеру, описано в работе S.Grivet-Talocia, "Passivity enforcement via perturbation of Hamiltonian matrices" («Принудительное осуществление пассивности посредством возмущения матриц гамильтониана»), IEEE Trans. Circuit and Systems I, vol.51, no. 9, pp.1755-1769, Sept. 2004.

Дальнейшие варианты, преимущества и применения находятся в зависимых пунктах формулы изобретения и нижеследующем подробном описании.

Варианты осуществления изобретения

Моделирование устройства

Как упомянуто, настоящее изобретение относится к моделированию линейных электрических свойств в электрическом компоненте с n портами.

Термин «электрический компонент» следует понимать в широком смысле, и он может относиться к отдельному устройству, такому как трансформатор, или к узлу из нескольких устройств, такому как система трансформаторов, двигателей и т.п., взаимно соединенных линиями питания.

Линейные электрические свойства такого устройства могут быть выражены матрицей Y размером n×n, которая в общем относится к напряжению, приложенному к порту для протекающего через него тока. Матрица Y может быть матрицей полных проводимостей, как описано во введении, но она может быть, например, также матрицей импедансов (обычно называемой Z) или матрицей рассеяния (обычно называемой S) устройства. Следовательно, даже хотя матрица Y является преимущественно матрицей полных проводимостей, она также может быть описана иным типом линейного отклика устройства.

Модель описывает зависимость матрицы Y от независимой переменной s, которая может быть частотой, но она может быть также, например, временем или дискретной z-областью. Следовательно, даже хотя эта независимая переменная s является преимущественно частотой, она также может быть любой иной независимой переменной, зависимость от которой описывается моделью.

Зависимость матрицы Y от независимой переменной s может быть, к примеру, описана моделью с вычетами в полюсах по уравнению (1). Эта модель имеет несколько параметров, которые должны быть возмущены, чтобы обеспечить пассивность. В примере уравнения (1) эти параметры являются матричными элементов матриц Rm и D. Альтернативно, эти параметры могут также быть, к примеру, собственными значениями матриц Rm и D. Кроме того, возможно также возмущать полюсные частоты аi.

Следует отметить, тем не менее, что уравнение (1) не является единственной моделью, которую можно использовать для описания матрицы Y в контексте настоящего изобретения. В частности, уравнение (1) можно уточнить добавлением дополнительного выражения, а именно s·E с матрицей E размера n×n, описывающей линейную зависимость матрицы Y от независимой переменной s.

В более общих терминах зависимость матрицы Y от s можно описать матрицей-функцией F, определенной выше, т.е.

при p1,…,pK, являющихся теми параметрами модели, которые должны быть возмущены для принудительного осуществления пассивности.

Функция F преимущественно является полиномиальной функцией, рациональной функцией или суммой полиномиальных и (или) рациональных функций.

Функция F преимущественно является рациональной функцией, преимущественно заданной как отношение между двумя полиномами в s, модель с вычетами в полюсах, модель пространства состояний или любая их комбинация.

Принудительное осуществление пассивности

Параметры подлежат возмущению таким образом, чтобы матрица Y стала пассивной. «Возмущение» в данном контексте означает, что параметры p1,…,pK (слегка) скорректированы, чтобы стать возмущенным набором параметров p1+Δp1,…, pK+ΔpK.

Если, например, матрица Y является матрицей полных сопротивлений, пассивности можно достичь для возмущенного набора параметров, если удовлетворяются следующие условия:

где eigi() есть оператор, выдающий собственное значение i от его матричнозначного аргумента. Если функция F есть модель с вычетами в полюсах уравнения (1) и если возмущение изменяет только матрицы Rm и D, это дает:

где ΔRm и ΔD являются изменениями, введенными в матрицы R и D вследствие возмущения.

В случае уравнения (1) это эквивалент условия по уравнению (2а). Следует отметить, тем не менее, что имеются и другие условия, которые обеспечивают пассивность матрицы Y, такие как ограничения, полученные из собственных значений матрицы гамильтониана, как упомянуто выше. Таким образом, в более общем виде условие того, что матрица Y возмущенного набора параметров p1+Δp1,…, pK+ΔpK пассивна, можно выразить функцией С условия в булевых значениях, зависящей от возмущенного набора параметров p1+Δp1,…, pK+ΔpK. А именно, при подходящем определении функции C условия, пассивность достигается, если:

Алгоритм возмущения

Цель описанного здесь алгоритма состоит в том, чтобы найти возмущенный набор параметров p1+Δp1,…, pK+ΔpK, который удовлетворяет уравнению (6) или, в более общих терминах, уравнению (8) при том условии, что возмущение поддерживается «как можно меньшим».

Принятый в настоящем изобретении подход мотивируется тем фактом, что матрицу Y можно сделать диагональной путем преобразования ее в матрицу ее собственных векторов T. А именно:

где Λ есть диагональная матрица с собственными значениями Y в качестве ее ненулевых элементов, а Т есть матрица размером n×n, образованная размещением n собственных векторов ti матрицы Y в ее столбцы. Перемножение справа уравнения (9) с T и взятие производных первого порядка при игнорировании выражений, включающих в себя ΔT, дает для каждой пары (λi, ti):

Иными словами, возмущение матрицы Y приводит к соответствующему линейному возмущению каждой моды и собственного пространства.

Настоящее изобретение основано на понимании того, что возмущение следует поддерживать «как можно меньшим» в смысле того, что возмущение каждой моды взвешивается обратным преобразованием элементов ее собственного значения.

Для случая модели с вычетами в полюсах по уравнению (7) это означает, что можно минимизировать ошибку в следующих уравнениях:

В более общем случае уравнение (5) это соответствует уравнению

Следовательно, назначение данного алгоритма состоит в нахождении приближенного решения для уравнений (12) или - например, для модели с вычетами в полюсах - решения для уравнений (11) для всех i=1 до n. Поскольку для каждого i имеется векторнозначное уравнение, это означает, что нужно аппроксимировать всего n×n скалярных уравнений при наблюдении одного из условий (6)-(8).

Такое приближение, как правило, выполняется за счет минимизации суммы квадратов ошибок всех уравнений с помощью алгоритмов квадратичного программирования.

Многие из этих алгоритмов минимизации предполагают, что подлежащие аппроксимации уравнения являются линейными по параметрам, которые должны подвергаться возмущению. Это уже случай для уравнения (11). Для общего случая уравнения (12) это не обязательно может быть необходимо. Например, если используется модель с вычетами в полюсах для уравнения (1), но меняются и частоты am полюсов, уравнение (11) становится нелинейным по возмущаемым параметрам Δam. В этом случае уравнения следует линеаризировать перед тем, как они будут введены в стандартные алгоритмы квадратичного программирования. Для общего случая уравнения (12) эту линеаризацию можно выразить как:

Перед введением данных в алгоритм квадратичного программирования можно вычислить производные в уравнении (13). Кроме того, значения собственных векторов ti и собственных значений λi, которые относятся к невозмущенной матрице Y, вычисляются до оптимизации.

Вместо минимизации ошибок уравнения (12) в среднеквадратичном смысле можно использовать любую подходящую меру (норму) каждого векторного элемента уравнений (13). Такие меры известны специалистам.

Способ согласно настоящему изобретению в значительной степени снижает проблемы возмущений, искажающие поведение модели при применении в моделировании с произвольными граничными условиями, в частности, если матрица Y имеет большой разброс собственных значений. Это достигается путем формулирования части наименьших квадратов в проблеме ограниченной оптимизации, так что размер возмущения собственных значений полных проводимостей обратно пропорционален размеру собственных значений. Благодаря этому можно обойти тот факт, что малые собственные значения становятся искаженными. Применение к моделям, имеющим большое нарушение пассивности, показывает, что новый подход сохраняет поведение исходной модели, тогда как большие отклонения приводят к альтернативным подходам. Подход модальных возмущений является в вычислительном плане более дорогим, чем альтернативные способы, и преимущественно используется редкими решателями для задачи квадратичного программирования.

Источник поступления информации: Роспатент

Показаны записи 131-140 из 151.
19.01.2018
№218.016.091f

Полюсная часть для использования при средних напряжениях и способ её изготовления

Группа изобретений относится к полюсной части детали для использования при средних напряжениях (варианты) и способу изготовления полюсной части (варианты). Полюсная деталь имеет изоляционное покрытие, которое выполнено из термореактивного или термопластического материала, в которой переходные...
Тип: Изобретение
Номер охранного документа: 0002631817
Дата охранного документа: 26.09.2017
17.02.2018
№218.016.2cb1

Контактная система

Электрическое коммутационное устройство содержит узел номинального контакта, который содержит первый номинальный контакт, имеющий множество пальцев номинального контакта, образующих каркас из пальцев, концентрический относительно продольной оси (z), и сопряженный второй номинальный контакт, а...
Тип: Изобретение
Номер охранного документа: 0002643777
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2d60

Способ металлизации керамики для перехода керамика-металл и получения самого перехода керамика-металл

Изобретение относится к способу выполнения металлизации керамики для перехода металл-керамика и к получению перехода металл-керамика. Способ получения металло-керамического составного элемента, имеющего переход металл-керамика, в котором керамический корпус соединен с металлической крышкой....
Тип: Изобретение
Номер охранного документа: 0002643737
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.3542

Устройство, содержащее диэлектрический изоляционный газ, включающий фторорганическое соединение

Настоящее изобретение относится к электрическому оборудованию, в частности к устройствам для генерации, распределения или использования электрической энергии. Устройство включает корпус, ограничивающий изолирующее пространство и электрический компонент, расположенный в изолирующем...
Тип: Изобретение
Номер охранного документа: 0002645846
Дата охранного документа: 01.03.2018
20.03.2019
№219.016.e508

Газоизолированное распределительное устройство с закрытыми ячейками

Распределительное устройство выполнено многофазным и имеет для каждой фазы газонаполненный корпус в модульном исполнении. В качестве модулей предусмотрены, по меньшей мере, преимущественно, горизонтально расположенная сборная шина (51, 52), силовой выключатель (10) и два аналогично...
Тип: Изобретение
Номер охранного документа: 0002344529
Дата охранного документа: 20.01.2009
29.03.2019
№219.016.f0fe

Высоковольтное распределительное устройство открытой конструкции

Высоковольтное распределительное устройство имеет, по меньшей мере, одну выполненную с открытой конструкцией сборную шину (11, 12), а также, по меньшей мере, две выполненные с возможностью соединения со сборной шиной ячейки или камеры распределительного устройства и, по меньшей мере, одну...
Тип: Изобретение
Номер охранного документа: 0002345460
Дата охранного документа: 27.01.2009
10.04.2019
№219.017.0407

Способ изготовления полюсных деталей выключателя для низковольтных распределительных устройств, распределительных устройств среднего напряжения и высоковольтных распределительных устройств, а также полюсная деталь

Изобретение относится к области электротехники, а именно к способу изготовления полюсных деталей выключателя или блоков конструктивных элементов из полимеров для низковольтных распределительных устройств, распределительных устройств среднего напряжения и высоковольтных распределительных...
Тип: Изобретение
Номер охранного документа: 0002355063
Дата охранного документа: 10.05.2009
10.04.2019
№219.017.04d9

Вакуумная дугогасительная камера с защитной оболочкой, которая наносится посредством термоусадки

Изобретение относится к вакуумной дугогасительной камере с литой полюсной деталью для применения в областях низких, средних и высоких напряжений, а также к способу ее изготовления. Технический результат - упрощение и удешевление изготовления с одновременным улучшением механических и...
Тип: Изобретение
Номер охранного документа: 0002331133
Дата охранного документа: 10.08.2008
10.04.2019
№219.017.0540

Заземляющий переключатель

Изобретение касается заземляющего переключателя для распределительного устройства среднего напряжения, который содержит множество неподвижных контактов, множество поверхностей подвижных контактов, выполненных с возможностью введения в контакт с указанным множеством неподвижных контактов,...
Тип: Изобретение
Номер охранного документа: 0002368974
Дата охранного документа: 27.09.2009
10.04.2019
№219.017.07c8

Вакуумная дугогасительная камера для коммутационных установок среднего напряжения

Изобретение касается вакуумной дугогасительной камеры для коммутационной установки среднего напряжения с одной или несколькими керамическими цилиндрическими трубчатыми секциями, закрытыми металлическими крышками как на стороне неподвижного контакта, так и на стороне коммутационного контакта, в...
Тип: Изобретение
Номер охранного документа: 0002407094
Дата охранного документа: 20.12.2010
+ добавить свой РИД