×
11.03.2019
219.016.dcf1

Результат интеллектуальной деятельности: ПРИМЕНЕНИЕ БИЯДЕРНОГО СЕРА-НИТРОЗИЛЬНОГО КОМПЛЕКСА ЖЕЛЕЗА АНИОННОГО ТИПА В КАЧЕСТВЕ ВАЗОДИЛАТАТОРНОГО ЛЕКАРСТВЕННОГО СРЕДСТВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к применению биядерного сера-нитрозильного комплекса железа анионного типа формулы Na[Fe(SO)(NO]·4HO в качестве вазодилататорного средства и для получения лекарственного средства для лечения ишемических заболеваний. Изобретение обеспечивает расширение арсенала кардиотропных лекарственных средств с улучшенным спектром активности на основе указанного комплекса железа, являющегося нетоксичным водорастворимым донором NO. 2 н.п. ф-лы, 4 ил., 5 табл.

Изобретение относится к биядерным сера-нитрозильным комплексам железа анионного типа - новым донорам NO с вазодилататорными свойствами, и может быть использовано в качестве гипотензивных препаратов для терапии сердечно-сосудистых заболеваний.

NO, как известно уже более 20 лет, вовлечен в различные физиологические и патофизиологические процессы в организмах млекопитающих [1) J.A.McCleverty, Chem. Rev., 2004, 104, 403; 2) Р.С.Ford, L.E.Laverman, Coord. Chem. Rev., 2005, 249, 391; 3) N.M. Crawford, J. of Experimental Botany, 2006, 57, 471; 4) R.Butler and I.L.Megson, Chem. Rev., 2002, 102, 1155; 5) L.J.Ignarro (Ed.), Nitric Oxide: Biology and Pathobiology, Academic Press, San Diego, 2000; 6) D.A.Wink, Y.Vodovotz, J.Laval, F.Laval, M.W.Dewhirst, J.B. Mitchell, Carcinogenesis, 1998, 19, 711; 7) A.Butler, R.Nicholoson (Eds.), Life, Death and Nitric Oxide, The Royal Society of Chemistry, Cambridge, 2003; 8) P.C.Ford, J. Bourassa, S.Kudo and K.Miranda, Coord. Chem. Rev., 1998, 171, 185]. Полученные данные о многоликой биологической активности этого радикала-медиатора и его реакциях с биологическими субстратами в клетках используются при разработке эффективных лекарственных препаратов - доноров NO. Для изменения внутритканевого уровня NO применяют соединения, либо генерирующие этот радикал, либо эффективно его связывающие.

Исследованиями последних лет в области молекулярной кардиологии установлена центральная роль оксида азота (NO) в регуляции сосудистого тонуса и метаболизма миокарда [Jones S.P., Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006; 40(1): 16-23]. Выяснено, что недостаток образования NO приводит к развитию эндотелиальной дисфункции, что, в свою очередь, вызывает повышение тонуса коронарных сосудов, а также увеличивает агрегационную и адгезивную способность тромбоцитов. При ишемическом и реперфузионном повреждении сердца это способствует развитию синдрома «no reflow», приводящему к прогрессивному ухудшению кровотока и в конечном итоге гибели кардиомиоцитов [Jugdutt B.I. Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev 2002; 7(4): 391-405]. Наиболее распространенными лекарственными средствами при нарушениях сердечно-сосудистой системы являются органические нитраты и нитропруссид [В.Г.Граник, Н.Б.Григорьев. Экзогенные доноры оксида азота (химический аспект) // Известия Академии наук. Серия химическая, 2002, №8, стр.1268-1313]. Однако эти препараты обладают рядом недостатков и побочных действий: i) нитратная толерантность и цианидное отравление, ii) необходимость дополнительной активации (термо-, фото- или ферментативной), что ограничивает возможность их использования в клинике. В связи с этим актуальной задачей является разработка новых перспективных доноров NO, к числу которых относятся биядерные нитрозильные комплексы железа с серосодержащими лигандами, которые были впервые выделены в кристаллической форме в ИПХФ РАН в 2004-2008 гг. [Н.А.Санина, С.М.Алдошин. "Функциональные модели нитрозильных [Fe-S] протеинов", Изв. АН. Сер. хим. 2004 (11) 2326-2345; Н.А.Санина, С.М.Алдошин, Т.Н.Руднева, Н.И.Головина, Г.В.Шилов, Ю.М.Шульга, В.М.Мартыненко, Н.С.Ованесян. "Синтез, структура и твердофазные превращения нитрозильного комплекса железа Na2[Fe2(S2O3)2(NO)4]·4H2O", Координационная Химия, 2005, 31, 301-306]. Синтезированные в ИПХФ РАН нитрозильные [2Fe-2S] комплексы являются аналогами активных центров не гемовых нитрозильных [2Fe-2S] белков и представляют собой гибридные молекулы, содержащие в своем составе одновременно два фармакозначимых фрагмента: серосодержащие лиганды природного происхождения (пеницилламин, структурные аналогии природных сульфонатов и др.) и NO группы. Так, установлено, что вазодилатация коронарных сосудов под действием растворов моноядерных динитрозильных комплексов железа с цистеином и восстановленным глутатионом (ДНКЖ) сопровождается снижением длительности нарушений ритма во время окклюзии коронарной артерии и достоверным уменьшением повреждения клеточных мембран в зоне риска при последующей реперфузии. Эти эффекты обусловлены антиоксидантным свойствами ДНКЖ и сочетаются с лучшим восстановлением аэробного обмена в ишемизированных кардиомиоцитах. Как правило, ДНКЖ получают в виде малостабильных водных растворов или в форме лиофильно высушенных композитов этих растворов с водорастворимыми полимерами [Ванин А.Ф., Лозинский В.И., Капелько В.И. Полимерная композиция для получения стабилизированной формы динитрозильного комплекса железа и способ получения указанной формы комплекса, Патент RU 2291880 C1], что ограничивает их широкое использование в прикладных целях, связанное с неконтролируемостью исходного состава.

В ИПХФ РАН биядерные сера-нитрозильные комплексы железа выделены в кристаллической форме, и надежно установлено, что в протонных средах (вода, физиологические растворы) генерируют NO самопроизвольно без дополнительной активации и образуют в растворах динитрозильные моноядерные интермедиаты (ДНКЖ). Определены количественные показатели NO-донирования синтезированных соединений в зависимости от концентрации используемого донора, температуры, рН среды в аэробных и анаэробных условиях электрохимическим методом с помощью сенсорных электродов amiNO-700. Взятые вместе, эти результаты указывают на возможность создания новых оригинальных антигипертензивных и противоишемических лекарственных средств на основе биядерных нитрозильных комплексов железа.

Задача настоящего изобретения состоит в расширении арсенала кардиотропных лекарственных средств и создании кардиотропных лекарственных средств с улучшенным спектром активности на основе нетоксичного водорастворимого донора NO: комплекса Na2[Fe2(S2O3)2(NO)4]·4H2O (далее по тексту препарата ТНКЖ).

Поставленная задача решается применением анионых биядерных нитрозильных комплексов железа комплекса Na2[Fe2(S2O3)2(NO)4]·4H2O в качестве оригинальных антигипертензивных и противоишемических лекарственных средств.

Сущность изобретения заключается в следующем. Авторы изобретения исследовали действие препарата ТНКЖ на аортальное давление изолированного сердца крысы в сравнении с клиническим препаратом Нитропруссидом натрия.

В опытах на изолированных сердцах крыс Wistar (средний вес тела и сердца соответственно 340 г и 1.7 г) исследовали действие ТНКЖ на аортальное давление (АД) в условиях ретроградной перфузии стандартным, насыщенным карбогеном раствором Кребса (РК) при t=37°C и постоянном коронарном потоке.

После наркоза уретаном (1,25 мг/г веса тела, в/б) и торакотомии изолированные сердца помещали в охлажденный раствор Кребса на 30-40 сек до полной остановки сокращений. В течение 10-20 мин сердца перфузировали антеградно (при постоянном давлении наполнения левого предсердия 15 мм рт.ст. и АД 60 мм рт.ст.) и определяли величину спонтанного коронарного потока (КП). После этого переходили на перфузию с постоянной объемной скоростью, равной спонтанному КП (в среднем 17 мл/мин). Регистрировали АД, стабилизация которого на 60-65 мм рт.ст. происходила через 5-10 мин, что служило исходным фоном для введения исследуемых донаторов NO.

В опытах с ТНКЖ использовали следующие исходные концентрации: 0.01 (n=6), 0.10 (n=6), 1.00 (n=8), 5.00 (n=14) и 10.0 (n=6) мкМ. Как и в контрольных опытах с НП, 1 мл раствора ТНКЖ вводили в аортальную канюлю в течение 2 сек. С учетом КП соответствующие средние действующие концентрации ТНКЖ были: 0.006, 0.059, 0.587, 3.403 и 5.919 мкМ. В качестве препарата сравнения использовали нитропруссид натрия (НП). 1 мл раствора НП вводили в аортальную канюлю в течение 2 с. Исходные концентрации НП были: 0.5 (n=11), 1.0 (n=8), 2.5 (n=10) и 5.0 (n=10) мкМ. Соответствующие действующие концентрации с учетом КП составляли 0.31, 0.61, 1.50 и 3.03 мкМ. В 12 контрольных опытах в аорту вводили РК без НП. Действие РК и НП на АД наблюдали в течение 15 мин, ТНКЖ и ПА - 30 мин после введения веществ. Контрольное введение в аорту 1 мл РК в течение 2'' сопровождалось характерными изменениями АД, представленными на фиг.1 (влияние введения 1 мл раствора Кребса (РК) на изменения аортального давления). В начале периода наблюдения (через 15'' после введения РК) АД возрастало в среднем на 29%, а в течение последующих 15'' падало в среднем на 13% от исходного. В дальнейшем АД сравнительно быстро восстанавливалось, и через 5-10 мин различия с исходным значением были недостоверны. Очевидно, что причиной изменений АД в контрольных опытах являлась кратковременная гиперволюмическая нагрузка коронарных сосудов, т.н. «гидродинамический удар», имевший место во всех группах опытов.

Действие нитропруссида.

Результаты, представленные в табл.1 и фиг.2 (изменения АД под действием введения 1 мл 0.5, 1.0, 2.5 и 5.0 мкМ нитропруссида), показали, что введение растворов НП с действующими концентрациями 0.31, 0.61 и 1.5 мкМ вызывает изменения АД, подобные контрольным: как и в контрольных опытах, наибольшему падению АД (наблюдавшемуся через 30'' после введения НП) предшествовало кратковременное увеличение и затем постепенное восстановление АД. В целом, динамика АД мало отличалась от контрольной, за исключением выраженности «гидродинамического удара», который был достоверно меньше, по сравнению с контрольным. При увеличении действующей концентрации НП до 3.03 мкМ начальный подъем АД был еще меньше, а восстановление АД замедлялось, так что к 15' все еще ниже исходного значения. Именно поэтому действующая концентрация НП 3.03 мкМ использовалась в качестве контрольной для сравнения с другими веществами.

Действие ТНКЖ.

В табл.2 представлены результаты введения растворов ТНКЖ с действующей концентрацией в диапазоне от 6 нМ до 6 мкМ. Показано, что достоверные различия с минимальной исходной концентрацией 0.01 мкМ появляются при использовании 1 мкМ раствора ТНКЖ, и в дальнейшем, по мере увеличения концентрации ТНКЖ до 10 мкМ, различия становятся более выраженными. На фиг.3 (влияние введения 1 мл 1.0, 5.0 и 10.0 мкМ ТНКЖ на АД) представлена динамика восстановления АД в течение 30' после введения в аорту 1 мл раствора ТНКЖ с исходными концентрациями 1, 5 и 10 мкМ (действующие концентрации 0.587, 3.403 и 5.919 мкМ соответственно). Показано, что по мере нарастания концентрации вещества, уменьшается выраженность первоначального подъема АД, увеличивается степень падения АД на 30'' в среднем от 27% до 35% от исходного, возрастает дефицит восстановления АД к 30' от 0 до 13%.

Сопоставление эффективности НП и ТНКЖ.

В табл.3 представлены результаты, полученные при действии на АД одинаковых (или приблизительно равных) действующих концентраций веществ: НП (3.03 мкМ) и ТНКЖ (3.40 мкМ). Показано, что при использовании равных действующих концентраций наиболее эффективным дилататором является ТНКЖ: максимальная степень падения АД через 30'' после введения составляла 30% от исходного (vs 19% у НП), а дефицит восстановления АД к 15' составлял 10% (у НП - 6%).

Таблица 1
Действие нитропруссида на АД (%)
Время после введения РК Нитропруссид, мкМ
0,5 1,0 2,5 5,0
n=12 n=11 n=8 n=10 n=10
15'' 129±5 103±1a 102±1a 100±abc 99±1d
30'' 87±4 85±1 86±1 86±1 81±1d
45'' 88±3 87±1 88±1 88±1 82±1d
1' 89±3 89+1 90±1 90±1 84±1d
2' 90±3 91±1 92±1 91±1 85±1d
3' 92±3 93±1 93±1 93±1 87±1d
4' 94±3 94±1 95±1 95±1 89±1d
5' 96±3 96±1 97±1 96±1 90±1d
10' 98±3 99±1 99±1 98±1 93±1d
15' 100±2 10±1 100±1 100±1 94±1d
a - P<0,05 vs 0,5
b - P<0,05 vs l,0
c - P<0,05 vs 2,5
d - P<0,05 vs all

Таблица 2
Действие ТНКЖ на АД (%)
Время после введения ТНКЖ, мкМ
0,01 0,10 1,00 5,00 10,0
n=6 n=6 n=8 n=14 n=6
15'' 104±3 102±2 103±2 99±2 89+3d
30'' 73±2 74±2 73±2 70±2b 65±3abc
45'' 75±2 77±2 76±2 73±2b 67±3d
1' 77±2 79±2 77±2 75±2b 69±3d
2' 79±2 82±2 81±1a 78±2b 72±2d
3' 82±2 84±1 83±1 80±1abc 74±2d
4' 83±1 87±1a 85±1ab 83±1bc 76±2d
5' 86±1 89±1a 88±la 86±1bc 78±2d
10' 89±1 92±1a 90±1a 88±1bc 80±2d
15' 92±1 93±1 92±1 90±1abc 82±2d
20' 95±1 95±1 95±1 92±1abc 83±2d
25' 98±1 97±1 97±1 94±1abc 86±1d
30' 100±1 100±1 100±1 96±1abc 87±1d
a - P<0,05 vs 0,01
b - P<0,05 vs 0,10
c - P<0,05 vs 1,00
d - P<0,05 vs all

Таблица 3
Действие ~3 мкМ НП, ПА и ТНКЖ на АД (%)
Время после введения НП ТНКЖ
n=8 n=14
15'' 99±1
30'' 81±1 70±2ab
45'' 82±1 73±2ab
1' 84±1 75±2ab
2' 85±1 78±2ab
3 87±1 80±1ab
4' 89±1 83±1ab
5' 90±1 86±1ab
10' 93±1 88±1ab
15' 94±1 90±1ab
a - P<0.05 vs НП
b - P<0,05 vs ПА

Таким образом, результаты свидетельствуют о том, что ТНКЖ снижает АД при болюсном введении в аорту изолированного сердца крысы, перфузируемого при постоянном коронарном потоке. Вазодилататорная эффективность изученного донора NO при близких действующих концентрациях (около 3 мкМ) уменьшается в ряду ТНКЖ>нитропруссид.

Авторы изобретения также изучили действие препарата ТНКЖ на коронарную, сократительную и насосную функцию изолированного сердца крысы.

Действие ТНКЖ, наиболее эффективного вазодилататора, на коронарную, сократительную и насосную функцию изучали в опытах на изолированных сердцах крыс-самцов Wistar (вес тела 360 г, вес сердца 1.6 г). После наркоза уретаном (1.25 мг/г, в/б) и торакотомии изолированное сердце помещали в охлажденный раствор Кребса (РК) на 30-40 сек до полной остановки сокращений. В течение 10-15 мин сердце ретроградно перфузировали стандартным РК (37°C, pH=7.4), насыщенным карбогеном (95% O2+5% CO2), при постоянном перфузионном давлении (ПД) 60 мм рт.ст. После удаления крови из коронарных сосудов и полостей сердца в левое предсердие вводили канюлю и сердце перфузировали антеградно при постоянном давлении наполнения левого предсердия 15 мм рт.ст. и сопротивлении оттоку (аортальном давлении) 60 мм рт.ст.

Давление в аорте и левом желудочке регистрировали при помощи тензометрических датчиков Р 50, монитора SP 1405 и регистратора SP 2010, Gould Statham. Показателем интенсивности сократительной функции СФ (ИСФ) служило произведение частоты сокращений сердца (ЧСС) на развиваемое давление, РД (разность между систолическим и минимальным диастолическим давлением, ДД). Насосную функцию характеризовал минутный объем (MO - сумма коронарного потока (КП) и аортального объема). Коронарную функцию (КФ) оценивали по коронарному сопротивлению (KC - аортальному давлению, отнесенному к КП).

Стабилизация функции длилась 15-20 мин, после чего регистрировали исходные показатели и прекращали отток раствора из аорты (дистальнее аортальной камеры) на 15 мин. При этом РК продолжал поступать в ЛЖ антеградно, однако перфузат, оттекающий из ЛЖ, попадал в коронарные сосуды в полном объеме (поскольку отток на периферию был перекрыт). Раствор ТНКЖ вводили в аортальную канюлю инфузионным насосом со скоростью 1 мл/мин в течение 5 мин (с 6-й по 10-ю мин окклюзии аорты). Действующая концентрация ТНКЖ и НП составляла 3.7·10-5 М при среднем КП 18+2 мл/мин. Выполнено 8 опытов с ТНКЖ и НП. В контроле (n=7) вводили стандартный РК без НП и ТНКЖ. После инфузии НП или ТНКЖ сердца перфузировали РК в течение 5 мин, после чего возобновляли антеградную перфузию с обычным оттоком перфузата из аорты, длившуюся 15 мин. Статистическая обработка результатов выполнена с использованием t-критерия Стьюдента.

Начало окклюзии аорты сопровождалось увеличением КП и ПД до 136% и 111% соответственно. При этом КС снижалось на 20%, ИСФ - на 18% (вследствие уменьшения РД), в то время как ЧСС оставалась стабильной, а ДД возросло на 7 мм рт.ст. (табл.4).

В процессе контрольной инфузии РК, КП и ПД уменьшались ниже исходных значений, а КС, наоборот, возрастало до 121%. Инфузия НП и ТНКЖ достоверно отличалась от контрольной, сопровождаясь увеличением КП и более низкими значениями КС, что, по-видимому, было обусловлено дилятацией коронарных сосудов. Если в контроле на фоне уменьшенного КП продолжалось снижение показателей СФ, то инфузия НП и особенно ТНКЖ обеспечивала более высокие значения показателей СФ в условиях окклюзии. При инфузии ТНКЖ показатели СФ незначительно отличались от начала окклюзии, в то время как снижение показателей в контроле и при введении НП было более выраженным (табл.4).

При отмывании (после прекращения инфузии) наблюдается быстрое выравнивание показателей коронарной и сократительной функции в контроле и опытах с НП. В то же время в опытах с ТНКЖ благоприятное действие после инфузии сохранялось, что выражалось в более высоких показателях СФ (табл.4).

В табл.5 показаны значения показателей коронарной, сократительной и насосной функции через 15 мин после прекращения окклюзии аорты. Видно, что восстановление функции в опытах с НП лучше, чем в контроле, но особенно успешно оно проходит после инфузии ТНКЖ (фиг.4).

Таблица 4
Функция при окклюзии аорты и инфузии РК, НП и ТНКЖ (в % от исходных значений)
ИСХОДНЫЕ ЗНАЧЕНИЯ ОККЛЮЗИЯ АОРТЫ
Начало Инфузия Отмывание
5 мин 5 мин 5 мин
Перфузионное давление РК 111±1 94±1a 92±1ab
63±6 мм рт.ст. НП 104±2а* 93±1ab
ТНКЖ 106±2a* 95±1ab**
Коронарный поток РК 138±2 78±4a 72±4a
18±2 мл/мин. НП 115±6a* 76±5ab
ТНКЖ 122±6a* 83±4ab*
Коронарное сопротивление РК 80±1 121±5a 128±6a
3.58±0.04 мм рт.ст./мл НП 91±4а* 124±6ab
ТНКЖ 87±3a* 115±5ab*
Систолическое давление РК 92±1 72±2a 65±2ab
101±1 мм рт.ст НП 83±3а* 70±3ab
ТНКЖ 92±3** 79±2ab**
Диастолическое давление* РК 3±1 8±1a 11±1ab
-4±1 мм рт.ст. НП 6±1a* 9±1ab*
ТНКЖ 2±1** 5±1ab**
Развиваемое давление РК 85±1 62±3a 52±3ab
104±1 мм рт.ст. НП 74±4а* 58±3ab*
ТНКЖ 87±3** 71±3ab**
Частота сокращений сердца РК 100±1 80±2а 76±2ab
307±2 /мин НП 91±2а * 79+2ab
ТРКЖ 98±2** 85±2ab**
Интенсивность СФ РК 82±2 50±4а 39±3ab
33038±524 мм рт.ст./мин НП 68±5a* 47±4ab*
ТНКЖ 85±5** 61±4ab**
* - изменения в абсолютных значениях
a - P<0,05 vs начала окклюзии
b - P<0,05 vs инфузии
* - P<0,05 vs РК
** - P<0,05 vs PK и НП

Таблица 5
Восстановление функции после окклюзии аорты (в % от исходных значений) и инфузии РК, НП и ТНКЖ
ИСХОДНЫЕ ЗНАЧЕНИЯ РЕПЕРФУЗИЯ, 15 мин
РК НП ТНКЖ
Перфузионное давление 95±1 96±1 98±1ab
63±6 мм рт.ст.
Коронарный поток 83±4 87±5 94±4a
18±2 мл/мин
Коронарное сопротивление 115±5 111±5 104±4a
3.58±0.04 мм рт.ст./мл
Систолическое давление 79±2 84±3 93±2ab
101±1 мм рт.ст
Диастолическое давление * 5±1 3±1a -1±1ab
-4±1 мм рт.ст.
Развиваемое давление 71±3 78±3a 90±3ab
104±1 мм рт.ст.
Частота сокращений сердца 85±2 89±2a 95±2ab
307±2/мин
Интенсивность СФ 61±4 69±4а 86±5ab
33038±524 мм рт.ст./мин
Аортальный объем 31±3 46±5а 77±4ab
27±3 мл/мин
Минутный объем 52±4 63±5a 84±4ab
45±1 мл/мин
Ударный объем 61±4 70±4а 88±3ab
144±1 мкл
* - изменения в абсолютных значениях
a - P<0,05 vs РК
b - P<0,05 vs НП

Таким образом, результаты показывают, что ТНКЖ вызывает выраженную длительную дилятацию коронарных сосудов. Возможно, именно улучшение коронарной функции обеспечивает более эффективное восстановление сократительной и насосной функции изолированного сердца крысы после 15 мин окклюзии аорты по сравнению с нитропруссидом. На фиг.6 показано влияние 5-мин инфузии 3.7·10-5 М нитропруссида (НП) и ТНКЖ на восстановление коронарного потока (КП), сократительной функции (СФ) и показателя насосной функции минутного объема (МО) после окклюзии аорты.

Таким образом, результаты исследований указывают на способность препарата ТНКЖ эффективно влиять на тонус сосудов. Вазодилатационное действие донора NO отчетливо проявлялось на модели изолированного перфузируемого сердца крысы дозозависимым снижением аортального давления: на этой модели наибольшая вазодилатационная эффективность обнаружена у ТНКЖ. Настоящее изобретения расширяет арсенал кардиотропных лекарственных средств и позволяет создать кардиотропные лекарственные средства с улучшенным спектром активности на основе нетоксичного водорастворимого донора NO: Na2[Fe2(S2O3)2(NO)4]·4H2O.

Предлагаемое изобретение позволяет применять анионый биядерный нитрозильный комплекс железа формулы Na2[Fe2(S2O3)2(NO)4]·4H2O в качестве оригинального антигипертензивного и противоишемического лекарственного средства с улучшенным спектром активности.

Источник поступления информации: Роспатент

Показаны записи 21-27 из 27.
29.04.2019
№219.017.45b2

Способ очистки многослойных углеродных трубок

Изобретение относится к нанотехнологии и может быть использовано в качестве компонента композиционных материалов. Многослойные углеродные нанотрубки получают пиролизом углеводородов с использованием катализаторов, содержащих в качестве активных компонентов Fe, Co, Ni, Mo, Mn и их комбинаций, а...
Тип: Изобретение
Номер охранного документа: 0002430879
Дата охранного документа: 10.10.2011
09.05.2019
№219.017.4e87

Способ модификации пористой структуры неорганической мембраны углеродным наноматериалом

Изобретение относится к технологии получения фильтрующих элементов для баромембранных процессов, используемых в различных отраслях промышленности: нефтехимической, фармацевтической, пищевой и других. Способ модификации пористой структуры неорганической мембраны углеродным наноматериалом...
Тип: Изобретение
Номер охранного документа: 0002411069
Дата охранного документа: 10.02.2011
18.05.2019
№219.017.567e

Нитроксисукцинат 2-этил-6-метил-3-оксипиридина (варианты использования) и способ его получения

Изобретение относится к нитроксисукцинату 2-этил-6-метил-3-оксипиридина формулы 1 и его использованию в качестве противоишемического, или противострессорного, или противогипоксического средства, или гепатопротектора, а также средства для лечения глазных кровоизлияний. А также к способу его...
Тип: Изобретение
Номер охранного документа: 0002394815
Дата охранного документа: 20.07.2010
24.05.2019
№219.017.6023

Сополимеры на основе производных замещенного циклопентанонбитиофена и способ их получения

Изобретение относится к области химической технологии высокомолекулярных соединений. Описаны сополимеры на основе производных замещенного циклопентанонбитиофена общей формулы (I), где Х означает S или остаток дициановинильной группы формулы (II-а), или моноциановинильной группы общей формулы...
Тип: Изобретение
Номер охранного документа: 0002423392
Дата охранного документа: 10.07.2011
19.06.2019
№219.017.8c03

Аминофуллерены и способ их получения

Изобретение относится к химической и фармацевтической отраслям промышленности и может быть использовано в биомедицинских исследованиях и фармакологии, а также при получении наномодификаторов пластических масс. Новые аминофуллерены, являющиеся биосовместимыми и улучшающие механические свойства...
Тип: Изобретение
Номер охранного документа: 0002460688
Дата охранного документа: 10.09.2012
10.07.2019
№219.017.ad27

Способ получения наноструктур полупроводника

Изобретение относится к области низкоразмерной нанотехнологии и высокодисперсным материалам и может быть использовано для получения упорядоченного массива наночастиц полупроводников на основе мезапористых твердофазных матриц. Сущность изобретения: в способе получения наноструктур...
Тип: Изобретение
Номер охранного документа: 0002385835
Дата охранного документа: 10.04.2010
10.07.2019
№219.017.af30

Сверхрешетка нанокристаллов со скоррелированными кристаллографическими осями и способ ее изготовления

Изобретение относится к квантовой электронике, к технологии создания сверхрешеток из нанокристаллов. Сущность изобретения: сверхрешетка нанокристаллов, состоящая из монодисперсных анизотропных нанокристаллов, обладает скоррелированными кристаллографическими осями отдельных нанокристаллов и всей...
Тип: Изобретение
Номер охранного документа: 0002414417
Дата охранного документа: 20.03.2011
Показаны записи 21-29 из 29.
20.03.2019
№219.016.e5aa

Плазмохимический способ получения катализатора для дегидрирования углеводородов

Изобретение относится к области каталитической химии, в частности к способам получения алюмохромовых катализаторов для дегидрирования парафиновых углеводородов преимущественно C-C до соответствующих олефинов с использованием низкотемпературной плазмы. Сущность: плазмохимический способ получения...
Тип: Изобретение
Номер охранного документа: 0002318597
Дата охранного документа: 10.03.2008
29.03.2019
№219.016.f79b

Водорастворимые биядерные катионные нитрозильные комплексы железа с природными алифатическими тиолилами, обладающие цитотоксической, апоптотической и no-донорной активностью

Изобретение относится к биядерному катионному нитрозильному комплексу железа с природными алифатическими тиолилами общей формулы [Fe(SR)(NO)]SO, где R представляет собой алифатические лиганды природного происхождения. Также предложены способ получения биядерного катионного нитрозильного...
Тип: Изобретение
Номер охранного документа: 0002441873
Дата охранного документа: 10.02.2012
14.05.2019
№219.017.51d7

Применение нитрозильного комплекса железа с n,n-диэтилтиомочевиной в качестве нового no-донорного противоопухолевого средства

Изобретение относится к медицине. Предложено применение нитрозильного комплекса железа с N-этилтиомочевиной состава [Fe(SR)(NO)]Cl⋅[Fe(SR)Cl(NO)], где R=C(NH)(NHCH), в качестве противоопухолевого средства для NO терапии опухоли, выбранной из карциносаркомы Hs578T, инвазивной гормонозависимой...
Тип: Изобретение
Номер охранного документа: 0002687269
Дата охранного документа: 13.05.2019
24.05.2019
№219.017.5efc

Способ получения нанокомпозиционных микропористых пластиков с армированными порами

Изобретение относится к способу получения нанокомпозиционных микропористых пластиков с армированными порами без использования растворителей, газа и микросфер. Способ включает два основных этапа, где на первом этапе получают нанокомпозиционное связующее на основе олигомера цианат-эфира из смеси,...
Тип: Изобретение
Номер охранного документа: 0002688554
Дата охранного документа: 21.05.2019
04.11.2019
№219.017.de2c

Способ изготовления дисковых секторов для захвата, удержания и анализа магнитных микрочастиц и меченных ими биологических объектов на поверхности спиновых вентилей с помощью фемтосекундного лазерного облучения

Изобретение относится к области разработки биомедицинских сенсоров новых поколений, а именно к созданию секторов на поверхности приборов спинтроники. В биомедицине разделение здоровых и больных клеток основано на разной вероятности захвата магнитных наночастиц или микрочастиц клетками в...
Тип: Изобретение
Номер охранного документа: 0002704972
Дата охранного документа: 01.11.2019
31.07.2020
№220.018.390a

Биядерные кристаллические комплексы редкоземельных ионов (3+), способ их получения, способ получения магнитных полимерных композитов, применение магнитных полимерных композитов в качестве светочувствительных магнитных сред для спинтроники и устройств памяти

Изобретение относится к способу получения кристаллических комплексов редкоземельных ионов (3+) общей формулы (РЗЭ)L(NO)⋅nCHOH, где РЗЭ - ионы лантаноидов (3+), n=2-4, L представляет собой фотохромный лиганд ряда дитиенилэтена...
Тип: Изобретение
Номер охранного документа: 0002728127
Дата охранного документа: 28.07.2020
16.05.2023
№223.018.622f

Сопряженный полимер на основе замещенного бензодитиофена, 5,6-дифторбензо[с][1,2,5]тиадиазола и тиофена и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного бензодитиофена, 5,6-дифторбензо[с][1,2,5]тиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве...
Тип: Изобретение
Номер охранного документа: 0002789132
Дата охранного документа: 30.01.2023
16.05.2023
№223.018.6232

Сопряженный полимер на основе замещенного флуорена, бензотиадиазола и тиофена и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного флуорена, бензотиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве дырочно-транспортного материала в...
Тип: Изобретение
Номер охранного документа: 0002789133
Дата охранного документа: 30.01.2023
16.05.2023
№223.018.6235

Сопряженный полимер на основе бензодитиофена, тиофена и бензотиадиазола и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного бензодитиофена, бензотиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве дырочно-транспортного материала в...
Тип: Изобретение
Номер охранного документа: 0002789131
Дата охранного документа: 30.01.2023
+ добавить свой РИД