×
11.03.2019
219.016.dc92

УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ПОЛЯ ЗРЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к медицине. Устройство содержит корпус с ручкой, снабженной кнопкой, и смотровым окном для наблюдения световых тест-объектов. В полости корпуса установлен демонстрационный экран с отверстиями и размещенными в них световыми точечными тест-объектами. Корпус выполнен цилиндрическим. Причем одна из торцевых поверхностей со стороны смотрового окна выполнена сферической с выступом, а ручка корпуса выполнена с возможностью вращения вокруг его центральной оси. Демонстрационный экран выполнен светоизлучающим с отверстием в центральной части. В качестве тест-объектов используют волоконно-оптические элементы, установленные и закрепленные в отверстиях демонстрационного экрана и соединенные со светодиодами для подсветки волоконно-оптических элементов, размещенными в блоке управления, подключенном к USB порту персонального компьютера через блок гальванической развязки. На центральной оси демонстрационного экрана в блоке управления установлен и закреплен элемент фиксации взгляда и контроля его положения. Применение данного устройства позволяет повысить точность результатов исследования, осуществлять постоянный контроль за положением зрачка пациента, а также обеспечивает постоянный и точный размер тест-объекта, что позволяет осуществлять раннюю диагностику глаукомы. 11 з.п.ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для ранней диагностики первичной глаукомы и других заболеваний, ограничивающих поле зрения глаза человека.

Из уровня техники известно устройство для исследования поля зрения (Авторское свидетельство СССР №1680056, опубликовано 30.09.1991 г., МПК: А61В 3/024), которое содержит полусферический экран с расположенными на его внутренней поверхности светодиодами, программный блок включения светодиодов, блок регистрации ответов, пульт управления. Данное устройство характеризуется повышенной точностью исследования за счет увеличения точности числа тест-объектов, предъявляемых на единицу поля зрения. При этом устройство позволяет повысить точность выставления исследуемого глаза в заданное положение. Достоинством устройства является закрепление полусферического экрана на фланце с возможностью поворота в диапазоне 0-90°.

К недостаткам данного устройства следует отнести достаточно большие габаритные размеры поворотного полусферического экрана со световыми тест-объектами, что существенно ограничивает область его эффективного использования. В частности, устройство не может быть использовано для проверки поля зрения у лежачих больных и в полевых условиях, а также для самоконтроля в домашних условиях для пациентов с глаукомой.

Известен способ ранней диагностики открытоугольной глаукомы (Патент RU №2220644, опубликовано 10.01.2004 г., МПК: А61В 3/024), который реализуют с использованием проекционного периметра отечественного производства ПРП-50. Использование периметра ПРП-50 и совокупность довольно сложных манипуляций с головой пациента частично решает проблему увеличения исследуемого поля зрения пациента. За счет перемещения на поверхности сферы периметра точки фиксации взора и поворота головы обследуемого пациента достигается некоторая коррекция границ, суженных влиянием выдающихся отделов глазницы и носа.

Учитывая форму внутренней оболочки глаза - сетчатки, представляющей собой немногим более полусферы, правильнее было бы получать отображение поля зрения в виде круга. На имеющихся же в практике приборах, таких как портативный дуговой периметр («Офтальмологические приборы», стр.45), периметр ПНР-1 (там же, стр.45-46), проекционный периметр ПРП-60 (там же, стр.46-51), полусферический проекционный периметр производства «К.Цейс Йена» (стр.51-52) и др., поле зрения выглядит в форме эллипса. Наиболее уязвимые, в плане развития оптической нейропатии, периферические отделы сетчатки, диагностируемые по сужению границ поля зрения, впервые обнаруживаются только при сужении их более чем на 45-50° в одном или более из трех (верхний, внутренний и нижний) квадрантов поля зрения. Кроме этого, исследование периферического зрения на указанной аппаратуре представляет собой стационарные методы, требующие специальное помещение, крупногабаритную, дорогостоящую аппаратуру, не пригодную для обследования лежачих больных и проведения динамического контроля в условиях офтальмологических кабинетов районных поликлиник и тем более на дому.

Наиболее близким к заявляемому является устройство для исследования поля зрения (Патент RU №2285440, опубликовано 20.10.2006 г., МПК: А61В 3/024), которое и выбрано в качестве прототипа. Устройство содержит демонстрационный экран с перфорациями и световыми точечными тест-объектами в виде светодиодов для предъявления пациенту. На поверхности экрана по его центральной оси закреплен фиксационный световой тест-объект. Устройство снабжено корпусом сферообразной формы с ручкой и многоразрядной шиной для подключения светодиодов к блоку управления светодиодами и источнику питающего напряжения. В полости корпуса с зазором смонтирован демонстрационный экран, выполненный в виде полой сферы. В корпусе и демонстрационном экране напротив фиксационного светового тест-объекта выполнено смотровое окно для наблюдения световых тест-объектов. Корпус, демонстрационный экран и смотровое окно выполнены соответственно диаметром (2,25-2,4)L, (1,75-1,9)L и (0,85-1,1)L, где L - горизонтальный размер глазницы человека. Данное устройство характеризуется возможностью ранней диагностики глаукомы за счет расширенных границ исследуемого поля зрения - по 90° со всех сторон.

К недостаткам данного устройства следует отнести отсутствие подсветки демонстрационного экрана, что не позволяет определять дифференциальную светочувствительность сетчатки в каждой исследуемой области; отсутствие контроля за точкой фиксации взгляда пациента, что может привести к неточности полученных результатов. А также малые отверстия в демонстрационном экране, диаметром (0,5-1) мм, могут вызвать дифракцию света, что приведет к увеличению размера тест-объекта, а следовательно, к снижению точности исследований, за счет сокращения явно наблюдаемых тест-объектов, особенно там, где они наиболее плотно расположены (центр демонстрационного экрана).

Некоторые модели современных устройств для исследования поля зрения позволяют методом статической (фиксированное положение световых объектов) или кинетической (движущийся в поле зрения объект) периметрии определить периферические границы в известных пределах, зависящих от анатомических естественных образований лицевого черепа. Поэтому верхняя, внутренняя и нижняя границы ограничены примерно 60°, а наружная имеет максимальное значение в 90°. Однако первыми начинают сужаться при развитии оптической нейропатии именно внутренние границы, что фиксируется как появление «носовой ступеньки». Это означает, что патогномоничным для глаукомного процесса будет выпадение нижне- или верхневнутреннего квадрантов поля зрения. Диагностика этих изменений запаздывает, поскольку невозможно увидеть световой объект из-за механической преграды в виде носа, надбровья и скуловой кости. Определение стадии глаукомы по степени сужения поля зрения часто не соответствует более значительному изменению диска зрительного нерва. Зачастую стадия заболевания уточняется в сторону прогрессирования глаукомного процесса именно по состоянию зрительного нерва, что больше соответствует уровню нарушения трофики сетчатки и ее проводящих путей.

Технический результат заявляемого изобретения заключается в повышении точности результатов исследования, осуществлении постоянного контроля за положением зрачка пациента, а также в обеспечении постоянного и точного размера тест-объекта, что дает возможность осуществления ранней диагностики глаукомы, а также повышения информативности и качества диагностики заболеваний сетчатки глаза.

Технический результат достигается за счет того, что устройство для исследования поля зрения содержит корпус с ручкой и смотровым окном для наблюдения световых тест-объектов. В полости корпуса установлен демонстрационный экран с отверстиями и размещенными в них световыми точечными тест-объектами. Отличается от прототипа тем, что корпус выполнен цилиндрическим, причем одна из торцевых поверхностей со стороны смотрового окна выполнена сферической с выступом. Ручка корпуса выполнена с возможностью вращения вокруг его центральной оси. Демонстрационный экран выполнен светоизлучающим с отверстием в центральной части. В качестве тест-обьектов используют волоконно-оптические элементы, установленные и закрепленные в отверстиях демонстрационного экрана и соединенные со светодиодами для подсветки волоконно-оптических элементов, размещенными в блоке управления, подключенном к USB порту персонального компьютера через блок гальванической развязки. На центральной оси демонстрационного экрана в блоке управления установлен и закреплен элемент фиксации взгляда и контроля его положения.

Предлагаемое устройство для исследования поля зрения имеет минимальные габариты при размере светового стимула 0,5 мм, позволяет осуществлять постоянный контроль за положением зрачка пациента, за счет наличия видеокамеры, определять дифференциальную светочувствительность сетчатки за счет постоянной подсветки демонстрационного экрана, а также обеспечивает постоянный и точный размер тест-объекта за счет использования волоконно-оптических элементов, что позволяет повысить точность измерений при исследовании поля зрения.

Сущность изобретения поясняется следующими чертежами:

Фиг.1 - общий вид устройства для исследования поля зрения;

Фиг.2. - сферопериметр в разрезе;

Фиг.3 - внешний вид интерфейса программы для проведения исследования поля зрения.

На Фиг.1 показано устройство для исследования поля зрения, включающее сферопериметр 1, блок гальванической развязки 2, служащий для обеспечения гальванической развязки интерфейса сопряжения с ЭВМ, и интерфейс 3 сопряжения с ЭВМ, который служит для подключения устройства к USB порту компьютера или ноутбука, обеспечивает необходимую скорость обмена данными и питание устройства.

Сферопериметр 1 (Фиг.2) содержит цилиндрический корпус 4, состоящий из двух соединенных между собой частей: крышки 5 и основания 6. На внешней цилиндрической поверхности крышки 5 корпуса 4 расположено кольцо 7, на котором закреплена с возможностью вращения ручка 8, с установленной на ней кнопкой 9 для ответа пациента, когда он видит светящийся тест-объект. Провода от блока гальванической развязки 2 проходят внутри ручки 8 и попадают в полость корпуса 4. Крышка 5 и основание 6 корпуса 4 выполнены из непрозрачного материала (например, АБС-пластика).

Часть внешней поверхности основания 6 корпуса 4, прилегающая к глазу, выполнена в виде сферы, переходящей в основной цилиндрический корпус, причем основной цилиндрический корпус расположен с уклоном (около 10°) относительно его сферической части. Такая конструкция корпуса 4 позволяет более плотно прижимать сферопериметр 1 к исследуемому глазу и расширить поле зрения со стороны назальной части.

Выступ 10 на внешней поверхности основания 6 корпуса 4 выполняет две функции: первая функция - расширение поля зрения в височной области до 90°, вторая - направляющая, позволяющая обеспечивать однозначное положение сферопериметра 1 относительно лица пациента, что приводит к большой повторяемости результатов обследования и позволяет сравнивать результаты разных по времени обследований одного пациента.

Для работы с другим глазом ручка 8, закрепленная на подвижном кольце 7, поворачивается на 180° до фиксации, сферопериметр поворачиваем так, чтобы ручка 8 снова оказалась внизу, а выступ 10 лег на височную часть головы с противоположной стороны, после чего проводится исследование второго глаза.

В центральной части торцевой поверхности основания 6 выполнено смотровое окно 11 для наблюдения световых тест-объектов.

Во внутренней полости основания 6 корпуса 4 на одной оси со смотровым окном 11 установлен демонстрационный экран 12 внутренним диаметром 130 мм, выполненный в виде полой полусферы с центральным отверстием 13 и отверстиями 14 меньшего размера для установки волоконно-оптических элементов 15. Демонстрационный экран 12 закреплен посредством дуговых кронштейнов 16 на внутренней торцевой поверхности основания 6.

Демонстрационный экран 12 выполнен из светопроводящего материала (например, оргстекла), обработанного по световодной технологии для придания ему светопроводных свойств за счет полного внутреннего отражения и частичного светопропускания. При этом толщина экрана может составлять (3-7) мм. Для подсветки фона демонстрационного экрана 12 на его вогнутой поверхности установлена и закреплена плата 17 (в виде плоского кольца) с размещенными на ней светодиодами 18, электрически связанная с блоком управления 19, что позволяет использовать демонстрационный экран 12 как световод.

Демонстрационный экран 12 может быть выполнен по OLED-технологии.

По всей поверхности демонстрационного экрана 12 выполнены отверстия 14 диаметром (0,5-0,6) мм, необходимые для установки в них волоконно-оптических элементов 15. Всего в светоизлучающем демонстрационном экране 12 выполнено 128 отверстий, которые упорядочены определенным образом и образуют 16 полумеридиан. На каждом четном полумеридиане световые тест-объекты расположены через 10°, начиная с 10°, а на каждом нечетном полумеридиане световые тест-объекты расположены через 10°, начиная с 5°.

Во внутренней полости крышки 5 корпуса 1 установлен блок управления 19 светодиодами 18 подсветки демонстрационного экрана 12 и светодиодами 20 подсветки волоконно-оптических элементов 15, закрепленный на кольцевом кронштейне 21. Блок управления 19 содержит плату управления 22 с установленными на ней элементами управления, держателем волоконно-оптических элементов 23 и цифровой видеокамерой 24.

Соединение демонстрационного экрана 12 и светодиодов 20 подсветки волоконно-оптических элементов 15 осуществляется с помощью волоконно-оптических элементов 15, один конец которых закрепляется в гнезде оправки светодиода 20, а второй - в отверстиях 14 демонстрационного экрана 12.

Для данного размера демонстрационного экрана 12 диаметр тест-объекта должен быть 0,5 мм. Такой размер тест-объекта не может обеспечить ни один светодиод, поэтому для исключения дифракции света на малых отверстиях использованы волоконно-оптические элементы 15 с диаметром 0,5 мм, что совпадает с расчетными значениями.

Плата управления 22 подключена через блок гальванической развязки 2 к USB порту персонального компьютера или ноутбука, на котором установлена программа для регистрации результатов обследования и подачи команд на плату управления 22, ведения базы данных по каждому пациенту, настройки режима обследования, а также проведения самого обследования, как в автоматическом режиме (без участия врача), так и в полуавтоматическом режиме.

Видеокамера 24 выполняет две функции - элемента контроля и элемента фиксации взгляда. Изображение положения зрачка подается на монитор, что позволяет врачу постоянно контролировать взгляд пациента, также программа распознает положение зрачка в момент нажатия кнопки 9 на ручке 8, и если в этот момент зрачок отклонился от центра, программа выдает ошибку и сообщает об этом врачу, после чего через некоторое время повторяет тест-объект (на котором возникла ошибка). Видеокамера 24 имеет простой интерфейс и достаточное разрешение (640×480). В момент нажатия пациентом кнопки 9 на ручке 8 снимок с видеокамеры 24 передается на ЭВМ и отображается в окне управляющей программы. Во время обследования врач в реальном времени сможет наблюдать за положением взгляда пациента.

Изобретением предусмотрено проведение цветной периметрии, для этого вместо бесцветных светодиодов подсветки демонстрационного экрана и светодиодов подсветки волоконно-оптических элементов достаточно установить многоцветные или полноцветные светодиоды.

Работа предлагаемого устройства для исследования поля зрения осуществляется следующим образом.

Обследование проходит в полностью автоматическом режиме двумя способами: статическим (псевдослучайно загораются все стимулы) и кинематическим (по очереди загораются последние стимулы на каждом меридиане). При каждом способе осуществляется постоянный двойной контроль положения глаза - либо визуально врачом на мониторе компьютера в интерфейсе программы, либо программой самостоятельно. При получении ответа «вижу» делается мгновенный снимок глаза, и программа распознает положение зрачка и его отклонение от центральной оси. При необходимости возможно отключение функции распознавания.

При статическом методе врач устанавливает пороговую минимальную яркость тест-объекта, с которой начинается обследование. Если на каком-то тест-объекте от пациента не приходит ответ «вижу», то яркость тест-объекта поднимается на одно значение вверх и тест-объект повторяется снова, после максимальной яркости отмечается зона ненаблюдения тест-объекта и исследование продолжается дальше, пока не проверятся все тест-объекты.

При кинематическом способе загораются последние тест-объекты на каждом меридиане, если не поступает ответ «вижу», то загорается следующий ближайший тест-объект на этом же меридиане.

Для проведения обследования устройство для исследования поля зрения необходимо подключить к компьютеру или ноутбуку с установленным необходимым программным обеспечением, внешний вид основного интерфейса которого изображен на Фиг.3.

Для начала обследования врач заполняет поля 25, 26, 27, 28, выбирает способ обследования (статический или кинематический) с помощью выпадающего меню 29, переключателем 31 выбирает обследуемый глаз, устанавливает начальную яркость тест-объекта, с помощью переключателя 32 или ползунком 33 подстраивает более точно, ползунком 34 подстраивает яркость подсветки (свечения) демонстрационного экрана. В окне 30 выводится изображение с цифровой камеры 24. Ползунком 35 настраивается необходимая длительность (время активности) тест-объекта, ползунком 36 настраивается периодичность появления тест-объекта (время между двумя ближайшими тест-объектами). После того как все поля заполнены и настроены параметры обследования, врач нажимает кнопку 37 «начать обследование», в поле 38 отображается текущий тест-объект и результаты ответов пациента (нажатие кнопки 9 на ручке 8 Фиг.2). После окончания обследования врач нажимает кнопку 39 для сохранения результатов обследования. В поле 40 врач может выбрать проведение не полного обследования, а, например, только один сектор.

Порядок проведения статической периметрии следующий.

Врач настраивает параметры обследования - интерфейс программы для проведения обследования (Фиг.3), в окне 38 выбирает область обследования (либо все поле зрения, либо определенный сектор) и нажимает кнопку 37 «Начать обследование». Световые тест-объекты начинают появляться в псевдослучайно выбранной области с периодичностью и длительностью, настроенными ползунками 35, 36. Пациент фиксирует взгляд на цифровой видеокамере 24 (Фиг.2) и в случае видимости тест-объектов нажимает кнопку 9. Программа делает в этот момент мгновенный снимок глаза, распознает положение зрачка, при его правильном положении фиксирует ответ пациента. При непоступлении ответа или при неправильном положении зрачка ответ не регистрируется (врач делает замечание пациенту). Пропущенные тест-объекты (на которые ответ не получен) и тест-объекты с неправильным положением зрачка через некоторое время повторяются заново. Если ответ не получен повторно, то программа автоматически поднимает яркость тест-объекта на следующий шаг и повторяет его. И так продолжается пока не будут пройдены все тест-объекты и, при необходимости, выбраны все возможные яркости тест-объектов. После проведения обследования в окне 38 будет видно поле зрения пациента с указанием чувствительности сетчатки в каждом тест-объекте и врач делает заключение о состоянии глаза. Врач также имеет возможность (если пациент уже проходил обследование на данном устройстве) в окне 38 наложить результаты разных обследований и сравнить результаты в динамике.

Порядок проведения кинетической периметрии следующий.

Врач настраивает параметры обследования - интерфейс программы для проведения обследования (Фиг.3), в окне 38 выбирает область обследования (либо все поле зрения, либо определенный сектор) и нажимает кнопку 37 «Начать обследование». Световые тест-объекты начинают появляться псевдослучайно, последние тест-объекты каждого полумеридиана - в выбранной области с периодичностью и длительностью, настроенными ползунками 35, 36. Пациент фиксирует взгляд на цифровой видеокамере 24 (Фиг.2), и если он наблюдает тест-объект, то нажимает кнопку 9, программа делает в этот момент мгновенный снимок глаза, распознает положение зрачка, при его правильном положении фиксирует ответ пациента. При непоступлении ответа или при неправильном положении зрачка ответ не регистрируется, врач делает замечание пациенту. Пропущенные тест-объекты (на которые ответ не получен) и тест-объекты с неправильным положением зрачка через некоторое время повторяются заново. Если ответ опять не получен, то программа зажигает следующий (ближе к центру) тест-объект на том же полумеридиане, и так повторяется несколько раз, пока не будет получен ответ. Обследование продолжается до тех пор, пока не будут пройдены все полумеридианы и не будет получен ответ на все крайние видимые тест-объекты. Это обследование проходит при постоянной яркости. После проведения обследования в окне 38 будут видны границы поля зрения пациента, и врач делает заключение о состоянии глаза. Врач также имеет возможность (если пациент уже проходил обследование на данном устройстве) в окне 38 наложить результаты разных обследований и сравнить результаты в динамике.

При работе с данным устройством для исследования поля зрения имеется возможность включить в программу работу с каждым тест-объектом индивидуально, если требуется установить пороговую минимальную чувствительность сетчатки, плавно меняя яркость тест-объекта, а также установить определенные зоны обследования (верхняя, нижняя, правая, левая четверть).

Программа автоматически сохраняет результаты обследования и позволяет осуществлять поиск среди результатов, используя как фильтр фамилию, имя и отчество пациента, а также она позволяет выводить на печать текущие и сохраненные результаты обследования, а также накладывать результаты текущего и прошлых исследований, что обеспечивает легкость сравнения и позволяет видеть прогресс в динамике.

В серийном производстве все части сферопериметра выполняются способом литья, что позволяет обеспечить минимальную стоимость и высокую технологичность устройства для исследования поля зрения.

Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
20.02.2019
№219.016.be3c

Электронная вычислительная машина

Изобретение относится к области вычислительной техники, в частности системам управления и обработки данных. Техническим результатом предлагаемого изобретения является повышение быстродействия, повышение надежности и расширение функциональных возможностей электронной вычислительной машины,...
Тип: Изобретение
Номер охранного документа: 0002344472
Дата охранного документа: 20.01.2009
20.02.2019
№219.016.bf61

Способ формирования информационного поля лазерной системы телеориентации

Изобретение относится к приборостроению и предназначено для формирования информационного поля лазерных систем телеориентации (ИП ЛСТ) и навигации, оптической связи, и может использоваться при управлении, посадке и стыковке летательных аппаратов, проводке судов через узости или в створы мостов,...
Тип: Изобретение
Номер охранного документа: 0002383896
Дата охранного документа: 10.03.2010
11.03.2019
№219.016.dc74

Устройство цифровой обработки сигналов

Изобретение относится к вычислительной технике и предназначено для программной цифровой обработки сигналов в системах радиолокации, гидроакустики и связи. Технический результат заключается в расширении функциональных возможностей и повышении производительности устройства цифровой обработки...
Тип: Изобретение
Номер охранного документа: 0002402807
Дата охранного документа: 27.10.2010
15.03.2019
№219.016.e066

Вертолетный радиолокационный комплекс

Изобретение относится к области радиолокации и может быть использовано на вертолетах. Достигаемый технический результат изобретения - расширение функциональных возможностей вертолетной радиолокационной станции. Данный результат достигается за счет того, что вертолетный радиолокационный комплекс...
Тип: Изобретение
Номер охранного документа: 0002344439
Дата охранного документа: 20.01.2009
18.05.2019
№219.017.53f5

Устройство для юстировки оптических приборов

Изобретение относится к оптико-механическому приборостроению и может быть использовано для юстировки оптических приборов. Изобретение направлено на повышение точности и устойчивости к воздействию механо-климатических факторов. Этот технический результат достигается тем, что устройство для...
Тип: Изобретение
Номер охранного документа: 0002279109
Дата охранного документа: 27.06.2006
29.05.2019
№219.017.66d6

Модуль синхронизации

Изобретение относится к приемному тракту радиолокационных или аналогичных систем и предназначено для обеспечения синхронизации работы всех составляющих приемного тракта, а также приемных и передающих блоков радиолокационных систем. Технический результат предлагаемого изобретения направлен на...
Тип: Изобретение
Номер охранного документа: 0002304788
Дата охранного документа: 20.08.2007
09.06.2019
№219.017.76a4

Двухдиапазонная фазированная антенная система с электронным управлением лучом

Изобретение относится к радиолокации и может быть использовано на борту летательных аппаратов. Технический результат заключается в минимизации воздействия излучения низкочастотного диапазона ФАР на характеристики излучения высокочастотной ФАР при обеспечении высоких эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002273926
Дата охранного документа: 10.04.2006
09.06.2019
№219.017.76c5

Оптический передающий модуль

Изобретение относится к квантовой электронной технике и может использоваться в системах лазерной космической связи и в системах лазерной атмосферной связи. Оптический передающий модуль содержит наружный корпус с размещенными в нем средством крепления, компаундом, лазерным диодом, установленным...
Тип: Изобретение
Номер охранного документа: 0002266597
Дата охранного документа: 20.12.2005
09.06.2019
№219.017.7d1e

Полуактивная фазированная антенная решетка

Изобретение относится к области радиотехники, в частности к антенной технике, может использоваться в радиолокации, связи и других системах. Технический результат заключается в обеспечении широких возможностей управления формой диаграммы направленности с одновременным обеспечением низкого...
Тип: Изобретение
Номер охранного документа: 0002414781
Дата охранного документа: 20.03.2011
Показаны записи 1-4 из 4.
27.08.2013
№216.012.65a9

Корпус прибора с воздушным охлаждением

Изобретение относится к области радиоаппаратостроения и может использоваться при конструировании корпусов радиоэлектронной аппаратуры. Технический результат - повышение эффективности охлаждения корпуса и модулей радиоэлектронной аппаратуры. Достигается тем, что корпус прибора с воздушным...
Тип: Изобретение
Номер охранного документа: 0002491662
Дата охранного документа: 27.08.2013
27.11.2015
№216.013.93f1

Электронный блок с воздушным охлаждением

Изобретение относится к области радиоаппаратостроения и может использоваться при конструировании корпусов радиоэлектронной аппаратуры. Технический результат - повышение эффективности охлаждения корпуса и модулей радиоэлектронной аппаратуры. Достигается тем, что в электронном блоке с воздушным...
Тип: Изобретение
Номер охранного документа: 0002569492
Дата охранного документа: 27.11.2015
10.08.2016
№216.015.53f4

Способ определения вида двигательной активности человека и устройство для его осуществления

Группа изобретений относится к области измерений для исследования или анализа движения тела человека или его частей для диагностических целей, в частности определения вида двигательной активности человека. При осуществлении способа регистрируют сигналы трехкомпонентного акселерометра,...
Тип: Изобретение
Номер охранного документа: 0002593983
Дата охранного документа: 10.08.2016
18.05.2018
№218.016.51f4

Устройство для определения состава газовых смесей

Изобретение относится к области определения состава газовых смесей, в том числе и углеродосодержащих, и позволяет производить качественный и количественный анализ примесей в основном газе. Техническо-экономическая эффективность ионизационной камеры состоит в существенном упрощении конструкции и...
Тип: Изобретение
Номер охранного документа: 0002653061
Дата охранного документа: 07.05.2018
+ добавить свой РИД