×
11.03.2019
219.016.dc2e

СОДЕРЖАЩИЙ БЛАГОРОДНЫЙ МЕТАЛЛ ТИТАНОСИЛИКАТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к титаносиликатным материалам и способам их получения. Описан содержащий благородный металл титаносиликатный материал, являющийся катализатором, характеризующийся тем, что упомянутый материал представлен оксидной формой xTiO·100SiO·yEO·zE, где x составляет в диапазоне от 0,001 до 50,0; (y+z) составляет в диапазоне от 0,0001 до 20,0 и y/z<5; E представляет собой один или более благородных металлов, выбранных из группы, состоящей из Ru, Rh, Pd, Re, Os, Ir, Pt, Ag и Au; m является числом, отвечающим степени окисления E; и кристаллические зерна упомянутого материала обладают полой структурой или изогнутой структурой. Описан способ получения указанного выше материала, включающий следующие стадии: (1) гомогенное смешивание титаносиликата, защитного средства, источника благородного металла, восстановителя, источника щелочи с водой с получением смеси, обладающей соотношением титаносиликат:защитное средство:источник щелочи:восстановитель:источник благородного металла:вода 100:(0,0-5,0):(0,005-5,0):(0,005-15,0):(0,005-10,0):(200-10000), где титаносиликат рассчитывают в граммах; защитное средство, источник щелочи, восстановитель и воду рассчитывают в молях; а источник благородного металла рассчитывают в граммах простого вещества благородного металла; и (2) подачу смеси, полученной на стадии (1), в реакционный сосуд, реагирование при условиях гидротермальной обработки, выделение продукта с получением титаносиликатного материала, причем упомянутые условия гидротермальной обработки относятся к гидротермальной обработке в течение 2-360 ч при температуре 80-200°С и аутогенном давлении. Описан способ получения указанного выше материала, включающий следующие стадии: (1) гомогенное смешивание источника титана, источника кремния, источника щелочи, защитного средства, источника благородного металла с водой с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник благородного металла:защитное средство:вода 100:(0,005-50,0):(0,005-20,0):(0,005-10,0):(0,0001-5,0):(200-10000), где источник кремния рассчитывают как SiO, источник титана рассчитывают как TiO; и источник благородного металла рассчитывают как простое вещество; гидротермальную кристаллизацию смеси в течение по меньшей мере 2 ч при 120-200°С и аутогенном давлении, извлечение, фильтрование, сушку и прокаливание продукта с получением промежуточного кристаллического материала; (2) подачу промежуточного кристаллического материала, полученного на стадии (1), в фильтрат, полученный после фильтрования на стадии (1), добавление восстановителя в молярном соотношении 0,1-10 к источнику благородного металла, добавленному на стадии (1), гидротермальную обработку в течение 2-360 ч при 80-200°С и аутогенном давлении, и выделение продукта с получением титаносиликатного материала. Технический результат - получен материал, характеризующийся увеличением селективности, каталитической активности в реакциях окисления. 3 н. и з.п. ф-лы; 3 табл.; 24 ил.; 12 пр.; 4 ср.пр.
Реферат Свернуть Развернуть

Область техники

Настоящее изобретение относится к титаносиликатному материалу и способу его получения. А именно, настоящее изобретение относится к содержащему благородный металл титаносиликатному материалу и способу его получения.

Предпосылки изобретения

Титаносиликат представляет собой новый тип гетероатомного молекулярного сита, разработанный в начале 1980-х годов. В настоящее время синтетические титаносиликатные молекулярные сита включают TS-1 со структурой типа MFI, TS-2 со структурой типа MEL, Ti-MCM-22 со структурой типа MWW и TS-48 со структурой с относительно более крупными порами. Среди упомянутых титаносиликатных молекулярных сит титаносиликат TS-1, разработанный компанией Enichem, Италия, представляет собой новый титаносиликат, обладающий превосходной каталитической селективностью и окислительной способностью и получаемый путем введения переходного металла, титана, в каркас молекулярного сита со структурой ZSM-5. TS-1 обладает не только свойством каталитического окисления титана, но и функцией конфигурационной селективности и превосходной стабильностью молекулярных сит ZSM-5. В качестве катализатора этот титаносиликатный материал может быть использован для катализа окисления различных органических веществ, например, эпоксидирования олефинов, частичного окисления алканов, окисления спиртов, гидроксилирования фенолов, аммоксидирования циклонов и т.п. При окислении органических веществ с использованием молекулярных сит TS-1 в качестве окислителя может быть использован свободный от примесей пероксид водорода в низкой концентрации с тем, чтобы избежать использования сложной технологии и загрязнения окружающей среды в процессе окисления. Он также имеет такие преимущества, как рациональное использование энергии, экономичность, благоприятность для окружающей среды, несравнимые с обычной системой окисления, и более высокую селективность реакции. Таким образом, он имеет большие перспективы применения в промышленности. Титаносиликат в качестве катализатора селективного окисления органических веществ считается ключевым в области молекулярно-ситового катализа.

Н2О2 представляет собой общепризнанный экологически чистый окислитель, и единственным побочным продуктом его окисления является вода. Однако водный раствор Н2О2 сложно хранить и перевозить. Н2О2 очень неустойчив и разлагается под воздействием тепла, света, шероховатой поверхности, тяжелых металлов и других примесей. Кроме того, из-за его коррозионной активности должны предприниматься особые меры безопасности при его упаковке, хранении и транспортировке. Таким образом, этот химический продукт может быть эффективно использован только в случае, если Н2О2 используют на месте, либо процесс производства Н2О2 объединен с осуществляемым далее технологическим процессом, в котором используется Н2О2.

Н2О2 может быть синтезирован непосредственно из Н2 и О2, при этом степень использования исходных веществ достигает 100%. Таким образом, возлагаются надежды на использование Н2 и О2 для синтеза Н2О2 непосредственно на месте и последующее окисление органического материала с тем, чтобы посредством прямого использования Н2О2 решить проблемы стоимости и безопасности. Поскольку Pt, Pd, Au и т.д. являются эффективными компонентами для синтезирования Н2О2 из Н2 и О2, во многих патентных документах сообщалось об исследованиях по нанесению их на титаносиликатный материал с целью производства на месте Н2О2 для селективного окисления органических веществ. Например, Meiers R. и другие (J. Catal., 1998, 176:376-386) провели исследования по газофазному эпоксидированию пропилена с использованием в качестве катализатора Pt-Pd/TS-1. Кроме того, в US 6867312В1 и US 6884898В1 также описаны подобные исследования. Хотя упомянутый метод осуществляется в мягких реакционных условиях и имеет хорошую селективность (возможно, выше 95%), ему присущи недостатки - относительно более низкая активность катализатора, плохая стабильность катализатора и т.п. Таким образом, основные задачи исследований и совершенствования упомянутого метода заключаются в приготовлении и модификации соответствующих катализаторов с целью увеличения степени конверсии реакций и повышения устойчивости к дезактивации и регенерируемости катализатора.

Описание изобретения

Ввиду недостатков, свойственных нанесенным на титаносиликатный материал благородным металлам, таким как Pt, Pd, Au и т.п., с целью производства на месте Н2О2 для процесса реакции селективного окисления органических веществ, настоящим изобретением предлагается содержащий благородный металл титаносиликатный материал и способ его получения.

Содержащий благородный металл титаносиликатный материал, предложенный в настоящем изобретении, отличается тем, что упомянутый материал представлен оксидной формой xTiO2·100SiO2·yEOm·zE, где х составляет в диапазоне от 0,001 до 50,0; (y+z) составляет в диапазоне от 0,0001 до 20,0 и y/z<5; Е представляет собой один или более благородных металлов, выбранных из группы, состоящей из Ru, Rh, Pd, Re, Os, Ir, Pt, Ag и Au; m является числом, отвечающим степени окисления Е. Кристаллические зерна упомянутого материала обладают полой структурой или изогнутой (вогнуто-выпуклой) структурой.

В содержащем благородный металл титаносиликатном материале, предложенном в настоящем изобретении, х предпочтительно составляет в диапазоне от 0,005 до 25 или от 0,001 до 20, более предпочтительно - от 0,005 до 20; (y+z) предпочтительно составляет в диапазоне от 0,005 до 20 или от 0,001 до 10, более предпочтительно - от 0,005 до 10, наиболее предпочтительно - от 0,01 до 7; y/z предпочтительно составляет меньше 3, более предпочтительно - меньше 2, более предпочтительно - меньше 1, наиболее предпочтительно - от 0,01 до 0,8. Упомянутый благородный металл предпочтительно является одним или более металлом, выбранным из группы, состоящей из Pd, Pt, Ag и Au, более предпочтительно - Pd и/или Pt. Когда благородный металл - это два или более металла, выбранных из этой группы, упомянутая величина у представляет собой сумму величины у для каждого благородного металла; а упомянутая величина z является суммой величины z для каждого благородного металла. Например, когда благородный металл - это Pt и Pd, упомянутый материал представлен оксидной формой xTiO2·100SiO2·y1PtO·y2PdO·z1Pt·z2Pd, т.е. y=y1+y2; и z=z1+z2. Кристаллические зерна упомянутого материала полностью или частично обладают полой структурой, и полость полых кристаллических зерен упомянутого материала имеет радиальную протяженность 0,1-500 нм, предпочтительно, 0,5-300 нм. Адсорбционная способность по бензолу упомянутого материала, измеренная при условиях температуры 25ºС, Р/Р0=0,10 и времени адсорбции 1 ч, составляет по меньшей мере 25 мг/г, предпочтительно, по меньшей мере 35 мг/г. Между изотермой адсорбции и изотермой десорбции низкотемпературной адсорбции азота упомянутым материалом имеется петля гистерезиса. При относительном давлении Р/Р0 примерно 0,60 разность между адсорбционной способностью по азоту при десорбции и адсорбционной способностью по азоту при адсорбции составляет более 2% адсорбционной способности по азоту при адсорбции. Форма полости упомянутого материала может быть различной, не фиксированной формой, например, круглой, или прямоугольной, или неправильной многоугольной, или неправильной круглой, или комбинациями этих форм. Кристаллические зерна упомянутого материала представляют собой монокристаллические зерна или агрегатные кристаллические зерна, агрегированные из множества кристаллических зерен.

Кристаллические зерна материала, предложенного в настоящем изобретении, могут полностью или частично иметь полую структуру или изогнутую структуру.

Что касается материала, предложенного в настоящем изобретении, то полые кристаллические зерна являются выгодными для дисперсии молекул реагентов и продуктов, что повышает синергический эффект между благородным металлом и титаносиликатом; а благородные металлы обладают более высокой диспергируемостью. Кроме того, полая структура содержащего благородный металл титаносиликатного материала, предложенного в настоящем изобретении, обладает сильной способностью вмещать углеродистые отложения. По сравнению с уровнем техники (например, обычным методом пропитки носителя), селективность, каталитическая активность и устойчивость продукта реакции заметно увеличиваются в реакции окисления, например, реакции получения пропиленоксида путем эпоксидирования пропилена.

Кроме этого настоящим изобретением предлагается два способа получения вышеуказанного содержащего благородный металл титаносиликатного материала.

Один из способов, предложенных в настоящем изобретении, включает гомогенное смешивание титаносиликата, защитного средства, источника благородного металла, восстановителя, источника щелочи с водой, подачу данной смеси в реакционный сосуд для гидротермальной обработки, фильтрование, промывку, сушку с получением этого материала. Более конкретно, упомянутый способ включает стадии:

(1) гомогенное смешивание титаносиликата, защитного средства, источника благородного металла, восстановителя, источника щелочи с водой с получением смеси, обладающей соотношением титаносиликат (г):защитное средство (моль):источник щелочи (моль):восстановитель (моль):источник благородного металла (г, рассчитанный по индивидуальному веществу благородного металла):вода (моль) 100:(0,0-5,0):(0,005-5,0):(0,005-15,0):(0,005-10,0):(200-10000); и

(2) подачу смеси, полученной на стадии (1), в реакционный сосуд, реагирование при условиях гидротермальной обработки, выделение продукта с получением титаносиликатного материала.

В упомянутом первом способе получения смесь обладает предпочтительным молярным соотношением титаносиликат (г):защитное средство (моль):источник щелочи (моль):восстановитель (моль): источник благородного металла (г, рассчитанный по индивидуальному веществу благородного металла): вода 100:(0,005-1,0):(0,01-2,0):(0,01-10,0):(0,01-5,0):(500-5000).

В вышеуказанном первом способе получения титаносиликат на стадии (1) включает различные типы титаносиликатных молекулярных сит с разными структурами, например, TS-1, TS-2, Ti-BETA, Ti-MCM-22, Ti-MCM-41, Ti-ZSM-48, Ti-ZSM-12, Ti-MMM-1, Ti-SBA-15, Ti-MSU, Ti-MCM-48 и т.п., предпочтительно, TS-1.

В вышеуказанном первом способе получения защитное средство представляет собой полимер или поверхностно-активное вещество, причем этот полимер выбран из группы, состоящей из полипропилена, полиэтиленгликоля, полистирола, поливинилхлорида, полиэтилена и их производных; а поверхностно-активное вещество выбрано из группы, состоящей из анионогенных поверхностно-активных веществ, катионогенных поверхностно-активных веществ и неионогенных поверхностно-активных веществ.

Восстановитель на стадии (1) вышеупомянутого способа получения может быть выбран из группы, состоящей из гидразина, боргидрида и цитрата натрия, причем гидразин выбран из группы, состоящей из гидрата гидразина, гидрохлорида гидразина и сульфата гидразина; а упомянутый боргидрид выбран из группы, состоящей из боргидрида натрия и боргидрида калия.

Источник благородного металла на стадии (1) вышеупомянутого способа получения представляет собой неорганическое или органическое вещество упомянутого благородного металла, которое может быть выбрано из группы, состоящей из оксидов, галогенидов, карбонатов, нитратов, аммонийнитратов, солей хлористого аммония, гидроксидов и других комплексов благородного металла. Если взять в качестве примера палладий, источник палладия может представлять собой неорганический и/или органический источник палладия, причем неорганический источник палладия выбирают из группы, состоящей из оксида палладия, карбоната палладия, хлорида палладия, нитрата палладия, аммонийнитрата палладия, аммонийхлорида палладия, гидроксида палладия и других комплексов палладия; органический источник палладия выбирают из группы, состоящей из ацетата палладия и ацетилацетоната палладия.

Источник щелочи на стадии (1) вышеупомянутого способа получения представляет собой неорганический или органический источник щелочи, причем неорганический источник щелочи выбирают из группы, состоящей из аммиака, гидроксида натрия, гидроксида калия и гидроксида бария; а органический источник щелочи выбирают из группы, состоящей из карбамида, щелочных соединений четвертичного аммония, соединений алифатических аминов, соединений аминоспиртов и их смесей.

Щелочные соединения четвертичного аммония имеют общую формулу (R1)4NOH, где R1 обозначает алкил с 1-4 атомами углерода, предпочтительно, пропил.

Соединения алифатических аминов имеют общую формулу R2(NH2)n, где R2 обозначает алкил или алкилиден с 1-6 атомами углерода, и n равно 1 или 2. Соединения алифатических аминов выбирают из группы, состоящей из этиламина, н-бутиламина, бутандиамина и гександиамина.

Соединения аминоспиртов имеют общую формулу (HOR3)mNH(3-m), где R3 обозначает алкил с 1-4 атомами углерода, и m равно 1, 2 или 3. Соединения аминоспиртов выбирают из группы, состоящей из моноэтаноламина, диэтаноламина и триэтаноламина.

В вышеуказанном первом способе получения защитное средство может добавляться или не добавляться.

Условия гидротермальной обработки на стадии (2) вышеупомянутого способа получения относятся к гидротермальной обработке в течение 2-360 ч при температуре 80-200ºС и аутогенном давлении. Упомянутый процесс выделения хорошо известен специалистам в данной области, и в нем нет ничего особенного. Упомянутый процесс выделения, как правило, включает такие процессы, как промывка, сушка кристаллизованного продукта и т.п.

Второй способ получения, предложенный в настоящем изобретении, включает, в частности, следующие стадии:

(1) гомогенное смешивание источника титана, источника кремния, источника щелочи, защитного средства, источника благородного металла с водой с получением смеси, обладающей молярным соотношением источник кремния:источник титана:источник щелочи: источник благородного металла: защитное средство:вода 100:(0,005-50,0):(0,005-20,0):(0,005-10,0):(0,0001-5,0):(200-10000), где источник кремния рассчитывают как SiO2, источник титана рассчитывают как TiO2; а источник благородного металла рассчитывают как простое вещество; гидротермальную кристаллизацию смеси в течение по меньшей мере 2 ч при 120-200ºС, извлечение, фильтрование, сушку и прокаливание продукта с получением промежуточного кристаллического материала; и

(2) подачу промежуточного кристаллического материала, полученного на стадии (1), в оставшийся на стадии (1) фильтрат, добавление восстановителя в молярном соотношении 0,1-10 к источнику благородного металла, добавленному на стадии (1), гидротермальную обработку в течение 2-360 ч при 80-200ºС и аутогенном давлении, и выделение продукта с получением титаносиликатного материала по настоящему изобретению.

Во втором способе получения, предложенном в настоящем изобретении, стадия (2) может быть повторена один раз или, если нужно, многократно.

Во втором способе получения, предложенном в настоящем изобретении, смесь на стадии (1) обладает предпочтительным молярным соотношением источник кремния:источник титана:источник щелочи: источник благородного металла:защитное средство:вода 100:(0,01-10,0):(0,01-10,0):(0,01-5,0):(0,0005-1,0):(500-5000).

Во втором способе получения, предложенном в настоящем изобретении, источник кремния на стадии (1) выбирают из группы, состоящей из геля кремниевой кислоты (силикагеля), золя кремниевой кислоты и органического силиката, причем предпочтительным является органический силикат. Этот органический силикат имеет общую формулу (R4)4SiO4, где R4 обозначает алкил с 1-4 атомами углерода, предпочтительно, этил.

Во втором способе получения, предложенном в настоящем изобретении, источник титана представляет собой неорганическую соль титана или органический титанат, предпочтительно, органический титанат. Эту неорганическую соль титана выбирают из группы, состоящей из TiCl4, Ti(SO4)2 и TiOCl2. Органический титанат имеет общую формулу Ti(OR5)4, где R5 обозначает алкил с 1-6 атомами углерода, предпочтительно, алкил с 2-4 атомами углерода.

Во втором способе получения, предложенном в настоящем изобретении, источник щелочи на стадии (1) представляет собой щелочное соединение четвертичного аммония или смесь щелочного соединения четвертичного аммония, соединения алифатического амина и соединения аминоспирта. Щелочное соединение четвертичного аммония имеет общую формулу (R6)4NOH, где R6 обозначает алкил с 1-4 атомами углерода, предпочтительно, пропил. Соединение алифатического амина имеет общую формулу R7(NH2)n, где R7 обозначает алкил или алкилиден с 1-6 атомами углерода, и n равно 1 или 2. Соединение алифатического амина выбирают из группы, состоящей из этиламина, н-бутиламина, бутандиамина и гександиамина. Соединение аминоспирта имеет общую формулу (HOR8)mNH(3-m), где R8 обозначает алкил с 1-4 атомами углерода, и m равно 1, 2 или 3. Соединение аминоспирта выбирают из группы, состоящей из моноэтаноламина, диэтаноламина и триэтаноламина.

Во втором способе получения, предложенном в настоящем изобретении, защитное средство представляет собой полимер или поверхностно-активное вещество, причем полимер выбирают из группы, состоящей из полипропилена, полиэтиленгликоля, полистирола, поливинилхлорида, полиэтилена и их производных; а поверхностно-активное вещество выбирают из группы, состоящей из анионогенных поверхностно-активных веществ, катионогенных поверхностно-активных веществ и неионогенных поверхностно-активных веществ.

Источник благородного металла на стадии (1) вышеупомянутого второго способа получения представляет собой неорганическое или органическое вещество упомянутого благородного металла, которое может быть выбрано из группы, состоящей из оксидов, галогенидов, карбонатов, нитратов, аммонийнитратов, солей хлористого аммония, гидроксидов и других комплексов благородного металла. Если взять в качестве примера палладий, то источник палладия может представлять собой неорганический и/или органический источник палладия, причем неорганический источник палладия выбирают из группы, состоящей из оксида палладия, карбоната палладия, хлорида палладия, нитрата палладия, аммонийнитрата палладия, аммонийхлорида палладия, гидроксида палладия и других комплексов палладия; органический источник палладия выбирают из группы, состоящей из ацетата палладия и ацетилацетоната палладия.

Во втором способе получения, предложенном в настоящем изобретении, восстановитель на стадии (1) выбирают из группы, состоящей из гидроксиламина, гидразина, боргидрида и цитрата натрия, причем гидразин выбирают из группы, состоящей из гидрата гидразина, гидрохлорида гидразина и сульфата гидразина; а упомянутый боргидрид выбирают из группы, состоящей из боргидрида натрия и боргидрида калия.

По сравнению с уровнем техники каталитическая и окислительная активность и селективность продукта способов получения, предложенных в настоящем изобретении, явно повышены. При этом указанные способы обеспечивают более высокую каталитическую активность и стабильность (см. пример 12). Кроме того, поскольку полая или изогнутая структура, имеющаяся у кристаллических зерен материала, предложенного в настоящей заявке, является благоприятной для диспергирования молекул реагентов и продуктов, особенно, макромолекул (например, ароматических соединений), в ходе каталитической реакции, он особенно выгоден для каталитического окисления ароматических соединений, циклических соединений и т.п.

Краткое описание чертежей

На фиг. 1 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота сравнительного образца DB-1 в Сравнительном Примере 1.

На фиг. 2 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца А в Примере 1.

На фиг. 3 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца В в Примере 2.

На фиг. 4 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца С в Примере 3.

На фиг. 5 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца D в Примере 4.

На фиг. 6 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца Е в Примере 5.

На фиг. 7 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца F в Примере 6.

На фиг. 8 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца G в Примере 7.

На фиг. 9 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца Н в Примере 8.

На фиг. 10 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца I в Примере 9.

На фиг. 11 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца J в Примере 10.

На фиг. 12 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца K в Примере 11.

На фиг. 13 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение сравнительного образца DB-1 в Сравнительном Примере 1.

На фиг. 14 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца А в Примере 1.

На фиг. 15 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца В в Примере 2.

На фиг. 16 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца С в Примере 3.

На фиг. 17 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца D в Примере 4.

На фиг. 18 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца Е в Примере 5.

На фиг. 19 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца F в Примере 6.

На фиг. 20 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца G в Примере 7.

На фиг. 21 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца Н в Примере 8.

На фиг. 22 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца I в Примере 9.

На фиг. 23 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца J в Примере 10.

На фиг. 24 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца K в Примере 11.

Варианты осуществления изобретения

Следующие ниже примеры обеспечивают дополнительное пояснение настоящего изобретения, но при этом не ограничивают настоящее изобретение.

Все реагенты, использованные в примерах, были серийно выпускаемыми продуктами химически чистых реагентов. Титаносиликат TS-1, использованный в сравнительных примерах и примерах, был получен в соответствии со способом, описанным в уровне техники в Zeolites, 1992, Vol.12, 943; использованный в них титаносиликат Ti-BETA был получен в соответствии со способом, описанным в уровне техники в J. Catal., 1994, Vol.145, 151; титаносиликат TS-2, использованный в сравнительных примерах и примерах, был получен в соответствии со способом, описанным в уровне техники в Appl. Catal., 1990, Vol.58, L1; использованный в них титаносиликат Ti-ZSM-48 был получен в соответствии со способом, описанным в уровне техники в J. Chem. Soc. Chem. Commun., 1994, 745; использованный в них титаносиликат Ti-ZSM-12 был получен в соответствии со способом, описанным в уровне техники в Zeolites, 1995, Vol.15, 236. Адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота этих образцов была получена в соответствии со стандартным методом ASTM D4222-98 на приборе для измерения статической адсорбции азота (Static Nitrogen Adsorption Device) ASAP2405 компании Micromeritics, США. ПЭМ-Изображения образцов были получены при помощи просвечивающего электронного микроскопа (ПЭМ) Tecnai типа G2F20S-TWIN компании FEI, Голландия, при ускоряющем напряжении 20 кВ. Кроме того, у этих образов была измерена величина адсорбции бензола с помощью обычного процесса статической адсорбции.

Сравнительный Пример 1

Этот сравнительный пример иллюстрирует процесс обычного приготовления нанесенного на носитель катализатора палладий/титаносиликат.

20 г титаносиликата TS-1 и 20 мл раствора комплекса аммонийнитрата палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) добавили к 20 мл деионизированной воды. Смесь перемешали до гомогенного состояния, подходящим образом герметизировали, пропитывали в течение 24 ч при температуре 40ºС, подвергли естественной сушке и восстановительной активации в течение 3 ч в атмосфере водорода при 150ºС с получением обычного нанесенного на носитель катализатора палладий/титаносиликат DB-1. При характеризации этот катализатор был представлен оксидной формой 6TiO2·100SiO2·0,7PdO·0,3Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 1) отсутствовала петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна твердотельная структура, а не полая или изогнутая структура (фиг. 13).

Пример 1

20 г титаносиликата TS-1, раствор комплекса аммонийнитрата палладия с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество гидрата гидразина и бромида цетилтриметиламмония добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 10%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):бромид цетилтриметиламмония (моль):гидроксид тетрапропиламмония (моль):гидрат гидразина (моль):комплекс амонийнитрата палладия (г, в расчете на палладий):вода (моль) 100:0,005:0,5:3,0:2,0:1000. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 48 ч при 150ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 180ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала А по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 4TiO2·100SiO2·0,01PdO·0,09Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 2) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 14).

Пример 2

20 г титаносиликата Ti-ВЕТА, раствор комплекса хлорида палладия с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество гидрохлорида гидразина и полипропилена добавили к водному раствору гидроксида натрия (с массовой концентрацией 15%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):полипропилен (моль):гидроксид натрия (моль):гидрохлорид гидразина (моль):хлорид палладия (г, в расчете на палладий):вода (моль) 100:0,9:1,8:0,15:0,1:4600. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 24 ч при 180ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 110ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала В по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 8TiO2·100SiO2·0,006PdO·0,008Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 3) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 15).

Пример 3

Тетраэтилортосиликат, тетрабутилтитанат, ацетат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и Tween 80 добавили к водному раствору гидроксида тетрапропиламмония и бутандиамина (с массовой концентрацией 10%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:0,03:0,5:0,05:0,02:550, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд, подвергали гидротермальной обработке в течение 120 ч при 120ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, затем добавили подходящее количество гидрата гидразина для гидротермальной обработки в течение 36 ч при 170ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 150ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала С по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 0,008TiO2·100SiO2·0,01PdO·0,2Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 4) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 16).

Пример 4

Золь кремниевой кислоты, тетрабутилтитанат, аммонийхлорид палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и додецилбензолсульфонат натрия добавили к водному раствору гидроксида тетрапропиламмония и бутандиамина (с массовой концентрацией 15%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:2,0:5,2:2,0:0,5:2500, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 96 ч при 150ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, а затем добавили подходящее количество гидрохлорида гидразина для гидротермальной обработки в течение 48 ч при 120ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 120ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала D по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 19TiO2·100SiO2·0,5PdO·1,3Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 5) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 17).

Пример 5

20 г титаносиликата TS-2, ацетат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество боргидрида натрия и Tween 80 добавили к водному раствору бутандиамина (с массовой концентрацией 10%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):Tween 80 (моль):бутандиамин (моль):боргидрид натрия (моль):ацетат палладия (г, в расчете на палладий):вода (моль) 100:0,1:0,02:0,05:0,03:520. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 120 ч при 120ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 150ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала Е по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 0,1TiO2·100SiO2·0,66PdO·0,12Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 6) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 18).

Пример 6

20 г титаносиликата Ti-ZSM-48, аммонийхлорид палладия с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество сульфата гидразина и Pluronic P123 добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 10%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):Pluronic P123 (моль):гидроксид тетрапропиламмония (моль):сульфат гидразина (моль):аммонийхлорид палладия (г, в расчете на палладий):вода (моль) 100:0,5:0,1:8,5:4,8:2000. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 240 ч при 90ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 120ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала F по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 0,04TiO2·100SiO2·3,6PdO·1,1Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 7) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 19).

Пример 7

Тетраэтилортосиликат, тетраэтилтитанат, ацетат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и бромид цетилтриметиламмония добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 13%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:8,2:7,5:0,1:0,005:800, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд, подвергали гидротермальной обработке в течение 96 ч при 160ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, а затем добавили подходящее количество гидрохлорида гидразина для гидротермальной обработки в течение 36 ч при 170ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 150ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала G по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 23TiO2·100SiO2·0,004PdO·0,8Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 8) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 20).

Пример 8

Тетраметилортосиликат, TiCl4, аммонийнитрат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и полихлорвинил добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 15%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:5,0:0,02:4,5:0,9:4800, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд, подвергали гидротермальной обработке в течение 96 ч при 150ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, а затем добавили подходящее количество боргидрида натрия для гидротермальной обработки в течение 48 ч при 120ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 120ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала Н по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 12TiO2·100SiO2·0,01PdO·6,4Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 9) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 21).

Пример 9

20 г титаносиликата Ti-ZSM-12, 10 мл раствора ацетата палладия в этаноле с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество цитрата натрия и полиэтиленгликоля добавили к водному раствору триэтаноламина (с массовой концентрацией 18%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):полиэтиленгликоль (моль):триэтаноламин (моль):цитрат натрия (моль):ацетат палладия (г, в расчете на палладий):вода (моль) 100:0,01:1,2:0,05:1,0:1500. Затем эту смесь подавали в реакционный сосуд, подвергали гидротермальной обработке в течение 320 ч при 130ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 140ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала I по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 0,5TiO2·100SiO2·0,7PdO·1,3Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 10) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 22).

Пример 10

Тетраэтилортосиликат, тетрапропилтитанат, ацетат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и бромид тетрадецилтриметиламмония добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 13%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:0,1:0,1:1,1:0,001:1500, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 72 ч при 160ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, а затем добавили подходящее количество гидрохлорида гидразина для гидротермальной обработки в течение 36 ч при 170ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 150ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала J по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 2TiO2·100SiO2·0,6PdO·3,3Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 11) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 23).

Пример 11

20 г титаносиликата TS-1, раствор комплекса аммонийнитрата палладия и аммонийнитрата платины с концентрацией 0,01 г/мл (в расчете на атом палладия или платины), гидрат гидразина и бромид цетилтриметиламмония добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 14%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):бромид цетилтриметиламмония (моль):гидроксид тетрапропиламмония (моль):гидрат гидразина (моль):аммонийнитрат платины (г, в расчете на платину):аммонийнитрат палладия (г, в расчете на палладий):вода (моль) 100:0,1:1,2:2,0:0,8:1,2:1800. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 72 ч при 180ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 180ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала К по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 4TiO2·100SiO2·0,3PdO·0,1PtO·0,9Pd·0,7Pt. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 12) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 24).

Сравнительный Пример 2

Этот сравнительный пример иллюстрирует процесс обычного приготовления нанесенного на носитель катализатора палладий-платина/титаносиликат.

20 г титаносиликата TS-1 и по 10 мл растворов комплекса аммонийнитрата палладия и аммонийнитрата платины с концентрацией 0,01 г/мл (в расчете на атом палладия или платины) добавили к 20 мл деионизированной воды. Смесь перемешали до гомогенного состояния, надлежащим образом герметизировали, пропитывали в течение 24 ч при температуре 40ºС, подвергли естественной сушке и восстановительной активации в течение 3 ч в атмосфере водорода при 150ºС с получением обычного нанесенного на носитель катализатора палладий-платина/титаносиликат DB-2. При характеризации этот катализатор был представлен оксидной формой 6TiO2·100SiO2·0,8PdO·0,4PtO ·0,2Pd·0,5Pt. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота отсутствовала петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), полая структура не зафиксирована.

Сравнительный Пример 3

Этот сравнительный пример иллюстрирует процесс обычного приготовления нанесенного на носитель катализатора палладий/титаносиликат.

20 г титаносиликата, полученного в соответствии со способом, описанным в Примере 1 документа CN1132699C, и 20 мл раствора комплекса аммонийнитрата палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) добавили к 20 мл деионизированной воды. Смесь перемешали до гомогенного состояния, надлежащим образом герметизировали, пропитывали в течение 24 ч при температуре 40ºС, подвергли естественной сушке и восстановительной активации в течение 3 ч в атмосфере водорода при 150ºС с получением нанесенного на носитель катализатора палладий-платина/титаносиликат DB-3. При характеризации этот катализатор был представлен оксидной формой 6TiO2·100SiO2·0,9PdO·0,1Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура.

Сравнительный Пример 4

Этот сравнительный пример иллюстрирует процесс обычного приготовления нанесенного на носитель катализатора палладий/титаносиликат.

20 г титаносиликата TS-2 и 15 мл раствора комплекса аммонийнитрата палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) добавили к 30 мл деионизированной воды. Смесь перемешали до гомогенного состояния, надлежащим образом герметизировали, пропитывали в течение 24 ч при температуре 40ºС, подвергли естественной сушке и восстановительной активации в течение 1 ч в атмосфере водорода при 150ºС с получением обычного нанесенного на носитель катализатора палладий/титаносиликат DB-4. При характеризации этот катализатор был представлен оксидной формой 7TiO2·100SiO2·0,2PdO·0,6Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота отсутствовала петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна твердотельная, а не полая структура.

Пример 12

Этот пример иллюстрирует влияние на реакцию получения пропиленоксида путем газофазного эпоксидирования пропилена образцов катализатора, полученных в примерах и сравнительных примерах настоящего изобретения, в присутствии водорода.

0,5 г каждого из образцов, полученных в описанных выше Примерах 1-11 и Сравнительных Примерах 1, 2, 3 и 4, соответственно добавили в реактор эпоксидирования, содержащий 80 мл метанола. В этот реактор подавали пропилен, кислород, водород и азот с образованием газообразной смеси пропилен-кислород-водород-азот (с молярным соотношением 1:1:1:7). Эпоксидирование этой смеси проводили при условиях температуры 60ºС, давления 1,0 МПа и объемного расхода пропилена 10 ч-1 с получением пропиленоксида (ПО).

Данные о степени конверсии пропилена и селективности ПО через 2 ч и 12 ч после начала реакции соответственно приведены в Таблицах 1 и 2.

Таблица 1
Источник образца Номер образца Степень конверсии пропилена, % Селективность ПО, %
Пример 1 A 5,24 91,68
Пример 2 B 5,53 92,56
Пример 3 C 4,36 92,14
Пример 4 D 4,73 91,87
Пример 5 E 4,21 91,65
Пример 6 F 5,21 91,45
Пример 7 G 5,13 92,26
Пример 8 H 4,86 92,61
Пример 9 I 5,32 91,29
Пример 10 J 4,53 91,88
Срав. Пример 1 DB-1 2,63 89,01
Пример 11 K 5,45 92,14
Срав. Пример 2 DB-2 2,71 88,52
Срав. Пример 3 DB-3 2,68 89,34
Срав. Пример 4 DB-4 1,14 86,65

Таблица 2
Источник образца Номер образца Степень конверсии пропилена, % Селективность ПО, %
Пример 1 A 5,18 91,21
Пример 2 B 5,42 92,11
Пример 3 C 4,35 92,06
Пример 4 D 4,71 91,52
Пример 5 E 4,25 91,49
Пример 6 F 5,20 91,43
Пример 7 G 5,12 92,12
Пример 8 H 4,88 92,54
Пример 9 I 5,14 91,07
Пример 10 J 4,51 91,72
Срав. Пример 1 DB-1 0,49 80,32
Пример 11 K 5,42 92,03
Срав. Пример 2 DB-2 1,26 81,24
Срав. Пример 3 DB-3 1,04 82,31
Срав. Пример 4 DB-4 0,61 80,28

Из Таблиц 1 и 2 видно, что активность материалов, предложенных в настоящем изобретении, заметно выше, чем материалов сравнительных образцов, а их селективность также в некоторой степени увеличена, что указывает на то, что их каталитическая активность при окислении и селективность явно улучшены по сравнению с уровнем техники, и при этом материалы по настоящему изобретению обладают лучшей стабильностью каталитической активности.

Данные по величине адсорбции бензола при условиях 25ºС, Р/Р0=0,10 и времени адсорбции 1 ч, а также радиальной протяженности полостей у образцов приведены в Таблице 3.

Таблица 3
Источник образца Номер образца Величина адсорбции бензола, мг/г Радиальная протяженность, нм
Пример 1 A 65 10-120
Пример 2 B 48 5-80
Пример 3 C 56 8-90
Пример 4 D 43 5-155
Пример 5 E 51 2-75
Пример 6 F 71 2-200
Пример 7 G 55 5-115
Пример 8 H 49 5-280
Пример 9 I 44 20-180
Пример 10 J 36 0,5-130
Срав. Пример 1 DB-1 22 -
Пример 11 K 45 5-90
Срав. Пример 2 DB-2 19 -
Срав. Пример 3 DB-3 34 60-80
Срав. Пример 4 DB-4 28 -

Источник поступления информации: Роспатент

Показаны записи 1-10 из 69.
27.04.2013
№216.012.3a24

Способ отделения побочных продуктов в водной фазе синтеза фишера-тропша

Настоящее изобретение относится к способу отделения побочных продуктов в водной фазе синтеза Фишера-Тропша, включающему стадии: а) подачи побочных продуктов в водной фазе в стандартную ректификационную колонну (1) в ее средней части с выведением части потока I, имеющего диапазон температур...
Тип: Изобретение
Номер охранного документа: 0002480445
Дата охранного документа: 27.04.2013
10.09.2013
№216.012.6791

Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя

Изобретение относится к способу селективного гидрирования фенилацетилена в присутствии стирола, проводимого в объединенном слое. Способ включает пропускание в условиях реакции гидрирования исходного потока углеводородной фракции, содержащей фенилацетилен и стирол, через объединенный слой в...
Тип: Изобретение
Номер охранного документа: 0002492160
Дата охранного документа: 10.09.2013
20.11.2013
№216.012.8195

Обессеривающий адсорбент, способ его приготовления и использования

Изобретение относится к области сероочистки. Адсорбент для удаления серы из крекинг-бензина или дизельного топлива содержит носитель, состоящий из источника кремнезема, связующее вещество на основе неорганического оксида, оксид металла, выбранный из группы IIB, и металл-катализатор, который...
Тип: Изобретение
Номер охранного документа: 0002498849
Дата охранного документа: 20.11.2013
27.01.2014
№216.012.9b85

Способ селективного гидрирования фенилацетилена в присутствии стирола

Изобретение относится к способу селективного гидрирования фенилацетилена в присутствии стирола, включающему контактирование углеводородной фракции сырья, содержащей фенилацетилен и стирол, с углеродсодержащим катализатором в условиях реакции гидрирования. При этом содержание углерода в...
Тип: Изобретение
Номер охранного документа: 0002505519
Дата охранного документа: 27.01.2014
27.04.2014
№216.012.be3a

Нагруженный металлом катализатор и способ его приготовления

Изобретение относится к области катализа. Описан нагруженный металлом катализатор конверсии органических соединений, который содержит носитель и первичные активные металлические компоненты, а также необязательно вспомогательные активные металлические компоненты, где первичными активными...
Тип: Изобретение
Номер охранного документа: 0002514438
Дата охранного документа: 27.04.2014
27.07.2014
№216.012.e299

Добавка и способ для обрыва полимеризации и/или снижения вязкости раствора полимера

Изобретение относится к области полимеров. Заявлена добавка для снижения вязкости раствора полимера, включающая: A. карбоновую кислоту, B. спирт, C. соль, которую выбирают из группы, состоящей из соли щелочного металла, соли щелочноземельного металла, соли аммония и смеси таковых, и E....
Тип: Изобретение
Номер охранного документа: 0002523799
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e8d9

Каталитический компонент для полимеризации олефинов и катализатор, включающий таковой

Настоящее изобретение относится к твердому каталитическому компоненту для полимеризации олефинов, включающему магний, титан, галоген и α-цианосукцинатное соединение в качестве внутреннего электронодонора, к катализатору, включающему каталитический компонент, и к применению катализатора в...
Тип: Изобретение
Номер охранного документа: 0002525402
Дата охранного документа: 10.08.2014
10.11.2014
№216.013.03b6

Способ получения оксалата монооксидоуглеродным газофазным способом

Изобретение относится к способу получения оксалата СО-газофазным способом для решения, по преимуществу, технической проблемы низкой эффективности использования и низкой селективности оксидов азота или сложных эфиров азотистой кислоты из предшествующего уровня техники. Способ получения оксалата...
Тип: Изобретение
Номер охранного документа: 0002532348
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0479

Компонент катализатора, применяемый для полимеризации олефинов, способ его получения и катализатор, содержащий такой компонент

Описаны способ получения твердых дисперсных частиц компонента катализатора, применяемых для полимеризации олефинов, который содержит магний, титан, галоген и донор электронов в качестве существенных составных частей, катализатор, содержащий указанный компонент катализатора, и способ...
Тип: Изобретение
Номер охранного документа: 0002532543
Дата охранного документа: 10.11.2014
20.07.2015
№216.013.6234

Способ обработки серосодержащего газа и используемый для данных целей катализатор гидрирования

Изобретение относится к способу обработки серосодержащего газа и к катализатору гидрирования, используемому для этого. Описан катализатор гидрирования, который включает в качестве активного компонента оксид никеля, оксид кобальта, а также оксид молибдена или оксид вольфрама. В качестве...
Тип: Изобретение
Номер охранного документа: 0002556687
Дата охранного документа: 20.07.2015
Показаны записи 1-10 из 20.
20.11.2013
№216.012.8195

Обессеривающий адсорбент, способ его приготовления и использования

Изобретение относится к области сероочистки. Адсорбент для удаления серы из крекинг-бензина или дизельного топлива содержит носитель, состоящий из источника кремнезема, связующее вещество на основе неорганического оксида, оксид металла, выбранный из группы IIB, и металл-катализатор, который...
Тип: Изобретение
Номер охранного документа: 0002498849
Дата охранного документа: 20.11.2013
20.05.2014
№216.012.c6ff

Способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа

Настоящее изобретение обеспечивает процесс производства метанола, диметилового эфира как основных продуктов и низкоуглеродистого олефина как побочного продукта из синтез-газа, в котором указанный процесс содержит стадию контакта синтез-газа с катализатором. Катализатор содержит аморфный сплав,...
Тип: Изобретение
Номер охранного документа: 0002516702
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.caa1

Адсорбент, способ его получения и способ удаления серы из крекинг-бензина или дизельного топлива

Группа изобретений относится к адсорбентам для удаления серы из крекинг-бензина или дизельного топлива. Адсорбент содержит от 10 до примерно 25 мас.% оксида алюминия, от 10 до 20 мас.% диоксида кремния, от 35 до 65 мас.% оксида металла, выбранного из групп IIB и VB, от 8 до 20 мас.%...
Тип: Изобретение
Номер охранного документа: 0002517639
Дата охранного документа: 27.05.2014
20.06.2014
№216.012.d4af

Способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа

Изобретение относится к улучшенному способу производства метанола, диметилового эфира и низкоуглеродистого олефина из синтез-газа. Способ включает стадию контакта синтез-газа с катализатором в условиях, обеспечивающих преобразование синтез-газа в метанол, диметиловый эфир и низкоуглеродистый...
Тип: Изобретение
Номер охранного документа: 0002520218
Дата охранного документа: 20.06.2014
20.12.2014
№216.013.109c

Аппаратура и способ каталитического крекинга

Настоящее изобретение относится к способу каталитического крекинга, включающему следующие стадии: тяжелое углеводородное сырье и необязательно распыляющий водяной пар приводят в контакт с катализатором, содержащими формоселективный цеолит со средним размером пор менее 0.7 нм, в первом...
Тип: Изобретение
Номер охранного документа: 0002535675
Дата охранного документа: 20.12.2014
10.11.2015
№216.013.8d2e

Способ получения алкиленоксида эпоксидированием олефина

Изобретение относится к способу получения алкиленоксида эпоксидированием олефина. Предложенный способ содержит стадии: (1) в условиях первого эпоксидирования олефина в присутствии первого твердого катализатора первый смешанный поток, содержащий растворитель, олефин и НО, подвергают...
Тип: Изобретение
Номер охранного документа: 0002567749
Дата охранного документа: 10.11.2015
10.03.2016
№216.014.c05d

Способ эпоксидирования олефина

Настоящее изобретение относится к способу эпоксидирования олефина, который включает эпоксидирование олефина пероксидом водорода в присутствии катализатора, представляющего собой молекулярное сито на основе силиката титана, и основной анионообменной смолы в условиях эпоксидирования олефина. При...
Тип: Изобретение
Номер охранного документа: 0002576620
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cbf4

Способ рафинирования сырого пропиленоксида и способ получения пропиленоксида

Настоящее изобретение относится к способу рафинирования сырого пропиленоксида и способу получения пропиленоксида, включающему способ рафинирования. В соответствии со способом рафинирования: сырой пропиленоксид вводят в первую колонну азеотропной дистилляции и подвергают азеотропной дистилляции,...
Тип: Изобретение
Номер охранного документа: 0002577850
Дата охранного документа: 20.03.2016
27.02.2016
№216.014.cf8e

Катализатор и способ его получения и способ эпоксидирования олефина

Настоящее изобретение относится к катализатору и способу его получения, а также способу эпоксидирования олефина с использованием катализатора. Катализатор содержит связующее вещество и силикат титана, причем связующее вещество является аморфным диоксидом кремния, указанный силикат титана имеет...
Тип: Изобретение
Номер охранного документа: 0002575936
Дата охранного документа: 27.02.2016
25.08.2017
№217.015.b954

Способ производства олефинов и ароматических углеводородов

Изобретение относится к способу производства олефинов и ароматических углеводородов из нафты, содержащему стадии: 1) проведения экстракционного разделения нафты с получением очищенной нефти, содержащей алканы и циклоалканы, и нефтяного экстракта, содержащего циклоалканы и ароматические...
Тип: Изобретение
Номер охранного документа: 0002615160
Дата охранного документа: 04.04.2017
+ добавить свой РИД