×
11.03.2019
219.016.d862

Результат интеллектуальной деятельности: РАБОЧАЯ ЧАСТЬ ТРАНСЗВУКОВОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, предлагается сделать в поперечной стойке отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В результате отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам течет в зону за поперечной стойкой. В другом варианте изобретения ниже по потоку от поперечной стойки установлены трубопроводы, имеющие отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В обоих вариантах камера давления и каналы поперечной стойки или трубопроводы могут быть соединены через вентиляторы. Технический результат заключается в снижении энергозатрат и расширении диапазона чисел Маха при проведении испытаний. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении исследований в трансзвуковых аэродинамических трубах.

Для проведения испытаний моделей летательных аппаратов в трансзвуковых аэродинамических трубах (числа Маха М=0,8-1,2) применяются рабочие части с перфорированными стенками, камерой давления, окружающей рабочую часть, и системой подвески модели с поперечной стойкой. При испытаниях модель вытесняет часть рабочего потока через отверстия перфорации. Далее этот газ должен удаляться из камеры давления, иначе в аэродинамической трубе не реализуется трансзвуковой диапазон чисел Маха из-за ее «запирания». Удаление газа производится, например, отдельным компрессором, так называемый «принудительный отсос» (см. А.Поуп, К.Гойн. Аэродинамические трубы больших скоростей. Издательство «Мир», Москва, 1968, стр.118). Потребляемая системой отсоса мощность достигает иногда 40% мощности основного компрессора трубы.

Известна также взятая за прототип конструкция рабочей части трансзвуковой аэродинамической трубы, включающая перфорированные стенки, камеру давления, узел подвески в потоке испытываемой модели с поперечной стойкой, в которой удаление газа из камеры давления производится с помощью «автоотсоса» (см. Г.Л.Гродзовский, А.А.Никольский, Г.П.Свищев, Г.И.Таганов. Сверхзвуковые течения газа в перфорированных границах. Издательство «Машиностроение», Москва, 1967, стр.90). В этом случае газ удаляется из камеры давления путем его эжектирования основным потоком через специально организуемый уступ в контуре за перфорацией. Недостатком такой конструкции являются большое сопротивление трубы основному потоку и соответственно большая потребная для испытаний мощность ее привода.

Задача настоящего изобретения - модернизировать рабочую часть трансзвуковой аэродинамической трубы.

Технический результат - снижение энергозатрат и расширение диапазона чисел Маха.

Решение задачи и технический результат достигаются тем, что в рабочей части трансзвуковой аэродинамической трубы, включающей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, поперечная стойка имеет отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. Отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки в основном потоке. Под аэродинамическим следом в аэродинамике понимается зона, расположенная ниже по потоку от обтекаемого тела и примыкающая к нему. Эта зона всегда расположена со стороны, противоположной набегающему потоку. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам потечет в зону за поперечной стойкой (П.Чжен. Отрывные течения. Пер. с англ., изд. «Мир», Москва, 1972, т.2, стр.86-88).

Решение задачи и технический результат также достигаются тем, что в рабочей части трансзвуковой аэродинамической трубы, включающей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, ниже по потоку от поперечной стойки установлены трубопроводы с отверстиями со стороны, противоположной набегающему потоку, и каналами, соединяющими камеру давления и эти отверстия. В результате камера давления соединяется с аэродинамическим следом от трубопроводов, и в него из камеры давления начинает поступать самотеком газ.

Кроме того, в обоих вариантах камера давления и каналы поперечной стойки или трубопроводов могут быть соединены через вентиляторы.

На фиг.1 приведена схема рабочей части трансзвуковой аэродинамической трубы по первому варианту изобретения.

На фиг.2 приведена схема рабочей части трансзвуковой аэродинамической трубы по второму варианту изобретения.

На фиг.3 показана установка вентиляторов во втором варианте изобретения.

В первом варианте (фиг.1) рабочая часть трансзвуковой аэродинамической трубы состоит из звукового сопла 1, перфорированных стенок 2, камеры давления 3, поперечной стойки 4 узла подвески испытываемой модели и диффузора 5. Внутри поперечная стойка имеет каналы 6 и отверстия 7 со стороны, противоположной набегающему потоку. При испытаниях поток разгоняется в сопле 1, направляется к модели и начинает ее обтекать. Часть потока при трансзвуковых скоростях вытесняется моделью через отверстия перфорации 2 в камеру давления 3. Далее этот газ поступает в полую (с каналами 6) поперечную стойку 4 узла подвески испытываемой модели и через отверстия 7 в ней в зоне обтекания стойки потоком поступает в поток и далее выбрасывается в диффузор.

Рабочая часть трансзвуковой аэродинамической трубы по второму варианту изобретения (фиг.2) состоит из звукового сопла 1, перфорированных стенок 2, камеры давления 3, поперечной стойки 4 узла подвески испытываемой модели, диффузора 5 и специальных трубопроводов 6 с каналами 7 и отверстиями 8, расположенных за поперечной стойкой 4 ниже по потоку в ее аэродинамическом следе. Специальные трубопроводы 6 через каналы 7 открыты в камеру давления, и в то же время они открыты через отверстия 8 в поток со стороны, противоположной набегающему потоку. При испытаниях поток разгоняется в сопле 1, направляется к модели и начинает ее обтекать. Часть потока при трансзвуковых скоростях вытесняется моделью через отверстия перфорации 2 в камеру давления 3. Далее этот газ поступает в полые (с каналами 7) трубопроводы 6, установленные за поперечной стойкой 4, и через отверстия 8 в них в зоне обтекания трубопроводов 6 потоком поступает в поток и затем выбрасывается в диффузор.

Статическое давление в аэродинамическом следе существенно (иногда вдвое) меньше статического давления в рабочей части и камере давления, поэтому газ потечет сам из камеры давления в аэродинамический след, если сделать соответствующие каналы. Для увеличения расхода этого газа в обоих вариантах изобретения камера давления и каналы стойки или дополнительных трубопроводов могут соединяться через вентиляторы 9 (фиг.3). Статическое давление в аэродинамическом следе действительно мало и большого напора не потребуется.

Использование изобретения позволит уменьшить сопротивление аэродинамической трубы основному потоку и повысить экономичность испытаний. Кроме этого, при изменении скорости потока во время пуска аэродинамической трубы отсос газа через предлагаемую систему отверстий в области стойки и дополнительных трубопроводов позволит продвинуться в область больших чисел Маха.

Данное предложение может применяться как альтернатива автоотсосу и принудительному отсосу, так и одновременно с ними.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 255.
10.10.2013
№216.012.7251

Способ управления уборкой механизации крыла самолета транспортной категории

Изобретение относится к авиации, в частности к способам управления механизацией крыла при взлете, повышающим безопасность полета самолетов транспортной категории посредством защиты закрылков и предкрылков от чрезмерных аэродинамических нагрузок. Для управления уборкой механизации крыла самолета...
Тип: Изобретение
Номер охранного документа: 0002494922
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.73e6

Способ локального подвода энергии к потоку воздуха, обтекающего объект

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к способам улучшения аэродинамического качества путем подвода энергии к их внешней поверхности. Способ локального подвода энергии к потоку воздуха, обтекающего объект, включает использование...
Тип: Изобретение
Номер охранного документа: 0002495327
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.75af

Законцовка крыла летательного аппарата

Изобретение относится к авиационной технике. Законцовка крыла летательного аппарата имеет корневой профиль, который выполнен с S-образной средней линией и участком отрицательной вогнутости длиной 20-70% хорды. Изломный и концевой профили законцовки выполнены с положительной вогнутостью....
Тип: Изобретение
Номер охранного документа: 0002495787
Дата охранного документа: 20.10.2013
20.11.2013
№216.012.82ed

Сверхзвуковой плазмохимический стабилизатор горения

Изобретение относится к области авиационной техники. Сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания состоит из установленных в проточной части камеры сгорания двух последовательно расположенных по потоку электродов, выполненных в виде обтекаемых пилонов с...
Тип: Изобретение
Номер охранного документа: 0002499193
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.8808

Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей. Способ основан на выборе безопасной частоты вращения шпинделя, обеспечивающей исключение резонанса между частотами колебаний фрезы, воздействующих на...
Тип: Изобретение
Номер охранного документа: 0002500506
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8812

Способ снижения вибраций нежесткой заготовки, обрабатываемой фрезерованием

Изобретение относится к машиностроению и может быть использовано при обработке нежестких заготовок при фрезеровании. Способ включает прикрепление к вибрирующей нежесткой заготовке динамического виброгасителя, который состоит из набора механических резонаторов с различными значениями собственной...
Тип: Изобретение
Номер охранного документа: 0002500516
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89f1

Разборная упругоподобная аэродинамическая модель и способ ее изготовления

Изобретение относится к области экспериментальной аэродинамики, в частности к исследованию проблем аэроупругости летательных аппаратов в области авиационной техники, а именно к разработке моделей для аэродинамических труб. Модель содержит силовой сердечник и крышку, представляющие в сборе...
Тип: Изобретение
Номер охранного документа: 0002500995
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e1b

Способ испытания железобетонных шпал и стенд для его реализации

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих шпалы. Сущность: максимальную нормированную нагрузку на шпалу задают отдельно в ее наиболее нагруженных сечениях. Проводят испытания...
Тип: Изобретение
Номер охранного документа: 0002502062
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.904e

Механизированное крыло летательного аппарата

Изобретение относится к авиационной технике. Механизированное крыло летательного аппарата состоит из кессонной части крыла, внутренней и внешней секций однощелевых закрылков, внутренней и внешних секций однощелевых предкрылков, элерона, интерцепторов, воздушных тормозов, мотогондолы с пилоном,...
Тип: Изобретение
Номер охранного документа: 0002502635
Дата охранного документа: 27.12.2013
Показаны записи 1-7 из 7.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
10.02.2014
№216.012.9f8e

Способ управления гибкими стенками сопла аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Способ заключается в том, что управление гибкими стенками сопла осуществляют автоматическими приводными механизмами по заданной программе. Задание на изменение контура...
Тип: Изобретение
Номер охранного документа: 0002506554
Дата охранного документа: 10.02.2014
20.08.2014
№216.012.ed23

Аэродинамическая труба

Изобретение относится к экспериментальной аэродинамике, в частности к аэродинамическим установкам (трубам), и может быть использовано для испытаний моделей лопастей воздушных винтов. Устройство содержит входной тракт с задвижкой и дросселем для ввода сжатого воздуха, форкамеру, пульсатор,...
Тип: Изобретение
Номер охранного документа: 0002526515
Дата охранного документа: 20.08.2014
10.04.2015
№216.013.3e71

Рабочая часть аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом...
Тип: Изобретение
Номер охранного документа: 0002547473
Дата охранного документа: 10.04.2015
10.08.2019
№219.017.bdf2

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний. Аэродинамическая труба содержит эжектор, который состоит из трех стволов, из которых как минимум один содержит перфорированное сопло....
Тип: Изобретение
Номер охранного документа: 0002696938
Дата охранного документа: 07.08.2019
17.08.2019
№219.017.c111

Устройство для измерения аэродинамической силы и момента

Изобретение относится к измерительной технике и предназначено для измерения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов при исследованиях в аэродинамических трубах (АДТ). Устройство содержит внутримодельные тензовесы с узлом крепления к...
Тип: Изобретение
Номер охранного документа: 0002697570
Дата охранного документа: 15.08.2019
16.05.2023
№223.018.60f4

Способ определения нестационарной силы и устройство для его реализации

Изобретение относится к области измерительной техники и позволяет определять нестационарные силы с помощью динамометров с высокой точностью в широком диапазоне частот как в инерциальной, так и в неинерциальной системах координат. Сущность: осуществляют приложение силы к динамометру и...
Тип: Изобретение
Номер охранного документа: 0002743778
Дата охранного документа: 25.02.2021
+ добавить свой РИД