×
11.03.2019
219.016.d5ff

Результат интеллектуальной деятельности: Способ определения класса шумящей цели и дистанции до неё

Вид РИД

Изобретение

№ охранного документа
0002681526
Дата охранного документа
07.03.2019
Аннотация: Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям (ШПС), предназначенным для обнаружения подводных лодок (ПЛ) и надводных кораблей (НК) по их шумоизлучению. Достигаемый технический результат - повышение достоверности классификации и точности определения дистанции до обнаруженной шумящей цели. Технический результат достигается тем, что решение о классе цели и дистанции до нее принимаются с использованием измеренных значений уровня сигнала и величины (скорости) изменения пеленга (ВИП) цели, обнаруженной на выходе веера характеристик направленности приемной гидроакустической антенны. 6 ил.

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям (ШПС), предназначенным для обнаружения подводных лодок и надводных кораблей по их шумоизлучению.

Наиболее сложными задачами, решаемыми такими ШПС, являются классификация обнаруженного объекта и определение дистанции до него.

Методы классификации и определения дистанции шумящих объектов приведены в работах [1-11]. Недостатком большинства известных методов являются дополнительные требования, предъявляемые ими к конструкции ШПС (например, разнесенный прием шумовых сигналов [6, 11]) либо к обработке принимаемого шумового сигнала (например, спектрально-корреляционный анализ [4, 5, 9]). В ряде случаев выполнение этих дополнительных требований затруднительно.

В качестве прототипа выберем способ классификации и определения дистанции обнаруженной шумящей цели, описанный в [12]. Он включает: формирование пеленгационного рельефа на выходе горизонтального веера характеристик направленности (ХН) приемной гидроакустической антенны (фиг. 1); обнаружение в пеленгационном рельефе методом двухстороннего контраста отметки цели; прослушивание оператором сигнала с выхода ХН, ось которой совпадает с максимумом отметки цели; принятие оператором по результатам прослушивания сигнала решения о классе цели и дистанции до нее.

Достоинством данного способа является его простота, а недостатком - невысокая эффективность (точность) классификации цели и определения дистанции, особенно при малых отношениях сигнал/помеха, при которых человеческий слух плохо улавливает особенности сигнала, присущие тому или иному объекту.

Решаемая техническая проблема - повышение эффективности использования ШПС.

Достигаемый технический результат - повышение достоверности классификации и точности определения дистанции до обнаруженной шумящей цели.

Указанный технический результат достигается тем, что с использованием пеленгационного рельефа измеряют уровень сигнала и скорость изменения пеленга отметки обнаруженной цели (последняя в кораблевождении называется величиной изменения пеленга или сокращенно ВИП [1]), и на основании полученных результатов принимают решение о классе и дистанции до цели.

Рассмотрим эффективность данного технического решения применительно к классификации обнаруженной шумящей цели на классы "подводная лодка" и "надводный корабль" и определения дистанции до нее.

Известно [12-14], что шумности надводных кораблей значительно (в среднем на 40 дБ) превышают шумности подводных лодок, ввиду чего один и тот же уровень сигнала на выходе приемного тракта ШПС соответствует существенно различающимся дистанциям в случае обнаружения надводного корабля и подводной лодки. А поскольку ВИП цели при увеличении дистанции до нее в среднем уменьшается, то по величине ВИП можно судить о дистанции до цели, а, следовательно и о ее классе.

Однако, поскольку на величину ВИП, кроме дистанции до цели влияют такие ее курс и скорость, которые на практике неизвестны, то определение правила (порогов) принятия решения о классе и дистанции цели по измеренным значениям уровня сигнала и ВИП можно осуществить только на вероятностном уровне [15-17]. Для этого предлагается построить условную (в зависимости от класса цели ω и дистанции R до нее) плотность распределения вероятностей (ПРВ) оценок уровня сигнала и ВИП цели . Тогда при подстановке в эту условную ПРВ вместо неслучайных аргументов (уровень сигнала) и (ВИП цели) оценок и , она превращается в функцию правдоподобия (ФП), зависящую только от класса цели ω и дистанции R до нее. Координаты максимума этой ФП соответствуют оптимальным значениям класса цели и дистанции до нее, т.е. являются решением рассматриваемой задачи.

В основе построения условной ПРВ лежат стохастические модели оценок уровня сигнала и ВИП цели , зависящие от класса цели и дистанции до нее.

Стохастическая модель оценки уровня сигнала имеет вид [13]:

где

- - оценка уровня сигнала цели на выходе приемного тракта ШПС в зависимости от класса ω, скорости Vω и дистанции R цели, дБ;

- ƒH, ƒB - нижняя и верхняя границы рабочего диапазона частот (РДЧ) ШПС, Гц;

- Sω(ƒ, Vω, R) - энергетический спектр на входе приемной антенны ШП сигнала цели класса ω, находящейся на расстоянии R от антенны и движущейся со скоростью V, Па2/Гц, определяемый по формуле [13]:

где

- Р0/ω(Vω) - давление шума цели класса ω, движущейся со скоростью V, приведенное к расстоянию 1 м от нее, частоте 1 кГц и полосе 1 Гц, называемое приведенной шумностью цели [12], Па/√Гц (далее - прив. ш. цели);

- ƒ - частота, кГц;

- β(ƒ) - коэффициент пространственного затухания, дБ/км, вычисляемый по формуле [13]:

- a, b, c - коэффициенты, зависящие от района Мирового океана;

- А(ƒ, R) - аномалия (по мощности) распространения сигнала частоты ƒ на расстояние R, которое рассчитывается для текущих гидроакустических условий по специальной программе (далее - аномалия);

- γ(ƒ) ~ передаточная характеристика приемного тракта на частоте ƒ, В/Па;

- ΔU - ошибка измерения уровня сигнала, дБ, распределенная по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением (СКО) σΔU.

Если разброс прив. ш. цели и ошибку расчета аномалии включить в ошибку измерения уровня сигнала ΔU, а также зафиксировать скорость цели, то первое слагаемое в правой части формулы (1) можно считать неслучайной величиной. Тогда единственной случайной величиной в правой части формулы (1) останется ошибка измерения уровня сигнала ΔU, и условная ПРВ оценки уровня сигнала цели может быть вычислена по формуле [15]:

I

где - нормальная ПРВ случайной величины с неслучайным аргументом , математическим ожиданием и СКО .

Стохастическая модель оценки ВИП имеет вид:

где

- - оценка ВИП цели в зависимости от класса цели ω и дистанции R, км, до нее, град/мин;

- П - пеленг цели, град;

- Vω,ρ - относительная скорость цели, уз, вычисляемая по формуле:

- Kн, Vн - курс и скорость носителя ШПС, соответственно;

- Кω,Vω - курс и скорость цели;

- Kω,ρ - относительный курс цели, град, вычисляемый по формуле:

- ошибка измерения ВИП цели, град/мин, распределенная по нормальному закону с нулевым математическим ожиданием и СКО .

Если курс и скорость цели, а также дистанция до нее постоянны, то по формуле (5) условная ПРВ оценки ВИП цели может быть вычислена по формуле:

Поскольку ошибки измерения уровня сигнала и ВИП цели можно считать взаимно независимыми, то совместная условная ПРВ оценок уровня сигнала и ВИП цели может быть вычислена как произведение правых частей формул (4) и (8):

Ввиду того, что нашей целью является получение ФП класса и дистанции цели, проинтегрируем обе части формулы (9) по ПРВ курса и скорости цели:

где - ПРВ курса цели, 1/град;

- ПРВ скорости цели, 1/уз.

Как было сказано выше, если в совместную условную ПРВ (10) в качестве аргументов подставить оценки уровня сигнала и ВИП , ПРВ становится ФП, зависящей только от класса цели ω и дистанции до нее R, и координаты максимума этой ФП соответствуют оптимальным значениям класса цели ωopt и дистанции до нее Ropt:

Рассмотрим типовой случай, для которого:

1) гидроакустические условия соответствуют сплошной акустической освещенности в мелком море;

2) рабочий диапазон частот 3-6 кГц;

3) курс носителя Kн=0°;

4) скорость носителя Vн=6 уз;

5) цель обнаружена по пеленгу П=30°;

6) ПРВ курса подводной лодки и надводного корабля подчинена нормальному распределению с математическим ожиданием, равным обратному пеленгу (т.е. предполагается, что цель идет нам навстречу), и СКО, равным 20°;

7) ПРВ скоростей подводной лодки и надводного корабля приведены на фиг. 1;

8) зависимости приведенной шумности цели от скорости P0/ω(Vω) приведены на фиг. 2;

9) СКО измерения уровня сигнала, учитывающая, в том числе, разброс приведенной шумности цели Р0/ω(V) и ошибку расчета аномалии, равна 6 дБ;

10) СКО измерения ВИП цели равна 0,01 град/мин.

Совместные условные ПРВ уровня сигнала цели и ВИП цели , соответствующие рассматриваемому случаю, приведены на фиг. 3 и 4. ПРВ на фиг. 3 рассчитана при условии, что цель - подводная лодка и дистанция до нее 9 км. ПРВ на фиг.4 рассчитана при условии, что цель - надводный корабль и дистанция до нее 85 км.

Пусть целью фактически является подводная лодка, находящаяся на дистанции от носителя ШПС 9 км и движущаяся курсом 150°, со скоростью 6 уз. Оценка уровня сигнала этой цели составила , оценка ВИП - . Подставляя эти значения оценок и вместо аргументов в ПРВ , получим ФП , зависящую только от класса цели и дистанции до нее. Эта ФП изображена на фиг. 5.

Из рассмотрения графиков на фиг.5 следует, что максимальное значение ФП принимает при классе цели «подводная лодка» (сплошная линия) и дистанции до нее 7,6 км. Т.е. класс определен правильно и ошибка определения дистанции составила 16%, что для пассивного режима приемлемо.

Теперь рассмотрим случай, когда целью фактически является надводный корабль, находящийся на дистанции от носителя ШПС 85 км и движущийся курсом 150°, со скоростью 15 уз. Оценка уровня сигнала этой цели составила , оценка ВИП - . Подставляя эти значения оценок и вместо аргументов в ПРВ , получим ФП , зависящую только от класса цели и дистанции до нее. Эта ФП изображена на фиг. 6.

Из рассмотрения графиков на фиг. 6 следует, что максимальное значение ФП принимает при классе цели «надводный корабль» (пунктирная линия) и дистанции до нее 74 км. Т.е. класс определен правильно и ошибка определения дистанции составила 13%, что также приемлемо.

Таким образом, заявляемый способ обеспечивает заявляемый результат, подтвержденный проведенным моделированием.

Источники информации

1. Справочник штурмана. Под ред. В.Д. Шандабылова // Воениздат, 1968.

2. Телятников В.И. Методы и устройства классификации гидроакустических сигналов // Зарубежная радиоэлектроника, 1979, №9, с. 19-38.

3. Телятников В.И. Методы и устройства для определения местоположения источника звука // Зарубежная радиоэлектроника, 1978, №4. С. 66-86.

4. Carter G. С. Passive Ranging Errors due to Receiving Hydrophone Position Uncertainty // JASA, 1979. Vol. 65, №2. P. 528-530.Hassab I.C., Boucher R.E. Passive Ranging Estimation from an Array of Sensors // Journal of Sound and Vibration, 1979. Vol.67, №2. P. 289-292.

5. Hassab I. C. Contact Localization and Motion Analysis in the Ocean Environment: a Perspective // IEEE Journal of Oceanic Engineering, 1983. Vol.OE-8, №3. P. 136-147.

6. Исак В.А. Измерение дистанции пассивными методами // Морской сборник, 1987. №5. С. 68-70.

7. Картер Дж.К. Обработка сигналов в пассивной гидролокации. В кн. Подводная акустика и обработка сигналов // М.: Мир, 1985. С. 415-421.

8. Quazi А.Н. An Overview on the Time-Delay Estimate in Active and Passive Systems for Target Localization // IEEE Transactions on ASSP, 1987. Vol., 9, №3. P. 527-533.

9. Патент РФ 2128848

10. Blackman S., Popoli R. Design and analyses of modern tracking systems // Ar-tech House, 1999. 1230 p.

11. Гампер Л.Е. О точности методов пассивной гидролокации с разнесенными бортовыми антеннами // "Гидроакустика", 2009, вып. 9, с. 34-42.

12. Корякин Ю.А., Смирнов С.А., Яковлев Г.В. Корабельная гидроакустическая техника. Состояние и актуальные проблемы // СПб.: Наука, 2004.

13. Урик Р. Дж. Основы гидроакустики // Л.: Судостроение, 1978.

14. Бурдик B.C. Анализ гидроакустических систем / Пер. с англ. // Л.: Судостроение, 1988.

15. Вентцель Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения // М.: Наука, 1988.

16. Репин В.Г., Тартаковский Г.П. Статистический синтез при априорной неопределенности и адаптация информационных систем // М.: Советское радио, 1977.

17. Кендал М, Стьюарт А. Статистические выводы и связи // М.: Наука, 1973.

Способ определения класса шумящей цели и дистанции до нее, включающий формирование пеленгационного рельефа на выходе горизонтального веера характеристик направленности приемной гидроакустической антенны, обнаружение в пеленгационном рельефе методом двухстороннего контраста отметки цели, отличающийся тем, что с использованием пеленгационного рельефа измеряют уровень сигнала и величину изменения пеленга цели, с их использованием и с учетом условных плотностей распределения вероятностей скорости и приведенной шумности целей каждого класса, курса цели, ошибок измерения уровня сигнала, ошибок измерения величины изменения пеленга, а также зависимости энергетического спектра сигнала на входе приемной антенны от дистанции до цели в текущих гидроакустических условиях, вычисляют функцию правдоподобия класса и дистанции до цели, по координатам максимума которой принимают решения о классе цели и дистанции до нее.
Способ определения класса шумящей цели и дистанции до неё
Способ определения класса шумящей цели и дистанции до неё
Способ определения класса шумящей цели и дистанции до неё
Источник поступления информации: Роспатент

Показаны записи 51-60 из 87.
08.03.2019
№219.016.d350

Способ определения класса шумящей цели и дистанции до неё

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для обнаружения подводных объектов и надводных объектов по их шумоизлучению. Технический результат - повышение достоверности классификации и точности определения дистанции шумящей...
Тип: Изобретение
Номер охранного документа: 0002681432
Дата охранного документа: 06.03.2019
17.03.2019
№219.016.e245

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что корпус двухстепенного поплавкового гироскопа выполнен в виде двух цилиндров, установленных...
Тип: Изобретение
Номер охранного документа: 0002682131
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.edcc

Полиуретановый гель

Изобретение относится к связующим заливочным составам, в частности к полиуретановым гелям, и предназначено для использования в гидроакустических системах. Композиция может быть также использована в радиоэлектронике, электротехнике. Полиуретановый гель получен путем взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002683098
Дата охранного документа: 26.03.2019
05.04.2019
№219.016.fd39

Способ обработки информации в гидроакустической антенне

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников. Решаемая техническая проблема - совершенствование способа обработки информации в...
Тип: Изобретение
Номер охранного документа: 0002684003
Дата охранного документа: 03.04.2019
20.04.2019
№219.017.3580

Способ определения класса шумящей цели

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для поиска и обнаружения подводных и надводных объектов. Технический результат - обеспечение достоверности классификации целей на классы «шум естественного происхождения» и «шум...
Тип: Изобретение
Номер охранного документа: 0002685419
Дата охранного документа: 18.04.2019
24.05.2019
№219.017.5d7c

Способ определения погрешности двухстепенного гироблока

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Достигаемый технический результат - повышение точности (достоверности) определения составляющей погрешности гироблока, обусловленной резонансом его...
Тип: Изобретение
Номер охранного документа: 0002688915
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5dc7

Способ измерения магнитного курса судна в высоких широтах и устройство для его реализации

Изобретение относится к области навигационного приборостроения и может быть использовано в высокоширотных магнитных компасах, имеющих погрешность на качке от воздействия на магниточувствительный элемент (МЧЭ) компаса вертикальной составляющей магнитного поля Земли, оборудованных устройствами...
Тип: Изобретение
Номер охранного документа: 0002688900
Дата охранного документа: 22.05.2019
04.06.2019
№219.017.733d

Способ определения координат морской шумящей цели

Изобретение относится к области гидроакустики, а именно к способам и устройствам обнаружения морских целей по их шумоизлучению, а точнее к способам определения координат целей с использованием интерференционных максимумов в автокорреляционной функции шума цели. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002690223
Дата охранного документа: 31.05.2019
04.06.2019
№219.017.733f

Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа

Изобретение относится к измерительной технике и может быть использовано при изготовлении прецизионных приборов на газодинамической опоре. Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа включает определение времени выбега ротора на последовательных этапах...
Тип: Изобретение
Номер охранного документа: 0002690231
Дата охранного документа: 31.05.2019
02.07.2019
№219.017.a30a

Способ обнаружения, классификации и определения координат и параметров движения морской шумящей цели

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для поиска и обнаружения шумящих морских объектов (целей). Технический результат - сокращение времени обнаружения и классификации целей. Указанный технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002692839
Дата охранного документа: 28.06.2019
Показаны записи 31-36 из 36.
12.04.2023
№223.018.4297

Способ обсервации подводного аппарата

Использование: изобретение относится к способам навигации автономных подводных аппаратов (ПА), конкретно к гидроакустическим способам определения местонахождения ПА с использованием подводных акустических маяков. Сущность: вместо активного акустического маяка, излучающего гидроакустические...
Тип: Изобретение
Номер охранного документа: 0002763114
Дата охранного документа: 27.12.2021
15.05.2023
№223.018.58ef

Способ проводки судна через заминированный район моря

Изобретение относится к способам проводки судов через заминированный район моря. При подходе к заминированному району судно стопорит ход и спускает на воду автономный необитаемый подводный аппарат (АНПА), оснащённый аппаратурой поиска мин. АНПА под управлением собственной системы управления...
Тип: Изобретение
Номер охранного документа: 0002760802
Дата охранного документа: 30.11.2021
15.05.2023
№223.018.58f8

Способ определения класса шумящего морского объекта

Изобретение относится к области гидроакустики, а именно к гидроакустическим комплексам (ГАК), оснащенным пассивным и активным режимами работы, и предназначенным для обнаружения подводных и надводных объектов. Технический результат - повышение вероятности классификации на предельных дистанциях...
Тип: Изобретение
Номер охранного документа: 0002760912
Дата охранного документа: 01.12.2021
01.06.2023
№223.018.7516

Распределенная система подводного наблюдения

Изобретение относится к области гидроакустики, а именно к распределенным системам подводного наблюдения (РСПН). Технический результат - повышение дальности обнаружения и точности определения координат и параметров движения малошумных подводных объектов. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002741760
Дата охранного документа: 28.01.2021
01.06.2023
№223.018.751c

Способ определения класса шумящего морского объекта

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для обнаружения подводных объектов и надводных объектов по их шумоизлучению. Технический результат - повышение достоверности классификации на предельных дальностях обнаружения...
Тип: Изобретение
Номер охранного документа: 0002746581
Дата охранного документа: 19.04.2021
19.06.2023
№223.018.81c4

Способы определения координат морской шумящей цели

Использование: изобретение относится к области гидроакустики, а именно к способам и устройствам обнаружения морских целей по их шумоизлучению, а точнее к способам определения координат целей с использованием интерференционных максимумов в автокорреляционной функции шума цели. Сущность: в...
Тип: Изобретение
Номер охранного документа: 0002797161
Дата охранного документа: 31.05.2023
+ добавить свой РИД