×
08.03.2019
219.016.d500

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТНЫХ СВОЙСТВ ВЫСОКОТЕМПЕРАТУРНЫХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения, а именно к испытаниям высокотемпературных покрытий деталей, преимущественно ГТД. В процессе нагрева, при достижении заданной максимальной температуры в цикле, к рабочей лопатке или модели с теплозащитным покрытием, преимущественно столбчатой структуры, образованной керамическими волокнами, по направлению действия центробежной силы, создают ускорение модели или лопатки, равное центробежному, действующему в сечении ее пера с прогнозируемым наибольшим повреждением покрытия. Это позволяет нагрузить теплозащитное покрытие инерционной нагрузкой, обеспечивающей изгиб волокон, по величине равный эксплуатационному при эксплуатационной же температуре. Проведение циклических испытаний покрытия в таких условиях нагружения позволят оперативно определить его циклическую долговечность в лабораторных условиях. Лопатка в эксплуатации подвергается, в основном, действию термонапряжений, возникающих вследствие ее неравномерного нагрева. Их имитация может быть осуществлена при разогреве образца, жестко закрепленного между мембранами, имеющими высокую по сравнению с ним жесткость. Мембраны препятствуют свободному расширению образца при его разогреве, создавая деформации сжатия, превышающие уровень пластических деформаций, а затем в полуцикле охлаждения в образце возникают растягивающие деформации, превышающие предел упругости. В результате образец разрушается по действием циклического нагружения. Результатом является возможность проводить испытания лопаток и моделей с ТЗП с имитацией действующих факторов в лабораторных условиях, что существенно снижает стоимость разработки новых типов ТЗП и лопаток и дает возможность существенно повысить ресурс авиационных ГТД. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения, а именно к испытаниям высокотемпературных покрытий деталей, преимущественно газотурбинных двигателей (ГТД).

При горении распыленного топлива в потоке воздуха внутри жаровой трубы камеры сгорания образуется факел, температура которого превышает 2000К. При этом уровне температур лопаткам турбины и стенкам жаровой трубы передается значительная доля теплового потока. Несмотря на различные системы заградительного охлаждения, температура стенок лопаток остается очень высокой и может превышать 1200°С. Для их защиты применять различные виды высокотемпературных покрытий, в первую очередь керамические теплозащитные покрытия (ТЗП). Разновидностью такого покрытия является ТЗП, образованное керамическими волокнами, не связанными между собой, что позволяет обеспечить высокое сопротивление термоусталости.

Для исследования влияния условий эксплуатации на долговечность деталей с покрытиями применяют различные методы испытаний, позволяющие имитировать действия центробежной и термоциклической нагрузок на деталь. Однако действие центробежной нагрузки на покрытие не может быть имитировано приложением сосредоточенной нагрузки. Волокна керамики расположены перпендикулярно поверхности лопатки и изгибаются под действием центробежной нагрузки, что приводит к их разрушению, поскольку керамика обладает низкой прочностью.

Известны способы и установки, разработанные для испытания лопаток турбин ГТД, образцов или моделей. Например, при испытаниях на газодинамических стендах [1] лопатки помещают в поток газа, поступающего из камеры сгорания. Однако относительно равномерный по высоте поток горячего газа не позволяет прикладывать сосредоточенную нагрузку, имитирующую центробежную, поскольку разрушение будет происходить в самой тонкой части лопатки - под бандажной полкой. Кроме того, ТЗП не подвергается нагружению центробежной нагрузкой.

Наиболее близким техническим решением является установка для испытания лопаток турбомашин на термоциклическую усталость [2], где приводятся испытания лопаток турбин, в том числе с покрытиями при простых и сложных условиях нагружения в изотермических и неизотермических температурных условиях. Разогрев лопаток осуществляется с помощью индуктора, располагающегося в сечении с минимальным запасом прочности. Неравномерное температурное поле, создаваемое с помощью специально спроектированного индуктора, имитирует эксплуатационное. К перу лопатки вдоль ее оси прикладывается нагрузка, по величине равная центробежной в опасном сечении. Разрушение пера происходит в разогреваемом сечении.

Основным недостатком данных технических решений является то, что они не позволяют испытывать ТЗП в условиях центробежной нагрузки.

Технической задачей является обеспечение нагружения рабочих лопаток турбин с ТЗП, преимущественно столбчатой структуры, например керамическое волокно, или их моделей нагрузками, имитирующими эксплуатационные, в том числе и инерционные.

Технический результат достигается в заявляемом способе определения прочностных свойств высокотемпературных теплозащитных покрытий деталей, преимущественно покрытий столбчатой структуры, образованной керамическими волокнами, направленными перпендикулярно к поверхности, на которую они нанесены, нанесенных на детали машин, например на рабочие лопатки турбин газотурбинных двигателей (ГТД) или их модели, заключающемся в том, что рабочие лопатки турбин или их модели подвергают циклическому нагреву и охлаждению до образования в лопатках турбин или их моделях трещин или повреждения самого теплозащитного покрытия, при этом согласно изобретению в процессе нагрева, при достижении заданной максимальной температуры в цикле, к рабочей лопатке или модели с теплозащитным покрытием по направлению действия центробежной силы создают ускорение, равное центробежному, действующему в сечении лопатки с прогнозируемым наибольшим повреждением керамических волокон теплозащитного покрытия.

В процессе нагрева, при достижении максимальной температуры, синхронно с ним к рабочей лопатке или модели прикладывают осевую нагрузку, равную центробежной, действующей в сечении рабочей лопатки или модели с прогнозируемым наибольшим повреждением керамических волокон.

Заявляемое устройство для определения прочностных свойств высокотемпературных теплозащитных покрытий деталей, преимущественно наносимых на детали машин, например на рабочие лопатки турбин газотурбинных двигателей (ГТД) или их модели, содержащее рабочую лопатку турбины или модель с теплозащитным покрытием, преимущественно столбчатой структуры, образованной керамическими волокнами, направленными перпендикулярно к поверхности, на которую они нанесены, устройство для крепления лопатки, устройство для нагрева, индуктор, подсоединенный к источнику высокочастотного тока, систему охлаждения рабочей лопатки или модели, систему управления температурой, при этом согласно изобретению устройство дополнительно содержит нагружающее устройство, обеспечивающее синхронное, с изменением температуры, нагружение лопатки или модели нагрузкой, имитирующей центробежную, динамический силовозбудитель, который создает ускорение вдоль оси лопатки, и систему управления нагружением, которая связана с системой управления нагревом. Устройство для крепления лопатки или модели снабжено мембранами, имеющими жесткость выше, чем жесткость рабочей лопатки или модели, мембраны соединены стойками, между которыми через динамометр и захваты фиксируется лопатка или модель, захваты соединены с регулируемым источником, от которого к захватам подводится высокочастотный ток, разогревающий лопатку или модель.

В процессе нагрева, при достижении заданной максимальной температуры в цикле, к рабочей лопатке или модели с теплозащитным покрытием, нанесенным по направлению действия центробежной силы, прикладывается импульс силы, создающий ускорение лопатки, равное центробежному, действующему в сечении ее пера с прогнозируемым наибольшим повреждением покрытия. Это позволяет нагрузить теплозащитное покрытие, например, состоящее из столбчатых керамических волокон, инерционной нагрузкой, обеспечивающей изгиб волокон, по величине равный эксплуатационному при эксплуатационной же температуре. Проведение циклических испытаний покрытия в таких условиях нагружения позволит оперативно определить его циклическую долговечность в лабораторных условиях.

Лопатка в эксплуатации подвергается, в основном, действию термонапряжений, возникающих вследствие ее неравномерного нагрева. Их имитация может быть осуществлена при разогреве образца, зафиксированного между мембранами, имеющими высокую по сравнению с ним жесткость. Мембраны препятствуют свободному расширению образца при его разогреве, создавая деформации сжатия, превышающие уровень пластических деформаций, а затем в полуцикле охлаждения в образце возникают растягивающие деформации, превышающие предел упругости. В результате лопатки или образец разрушаются по действием циклического нагружения.

В эксплуатации действует также центробежная нагрузка, которая при совместном действии с термонапряжениями на подложку ТЗП приводит к ее деформации, влияющей на расстояние между керамическим волокнами. Поэтому кроме сообщения лопатке импульса силы, обеспечивающего ее ускорение до заданной величины и создание термических деформаций, лопатку или ее модель подвергают действию осевой нагрузки, равной по величине, действующей в исследуемом сечении.

Устройство для определения прочностных свойств высокотемпературных теплозащитных покрытий деталей включает нагружающее устройство, создающее импульс силы, обеспечивающий ускорение рабочей лопатки или модели до заданной величины, нагружающее устройство, обеспечивающее нагружение лопатки или модели термонапряжениями или обеспечивающее неравномерный разогрев лопатки или модели, например, с помощью высокочастотного разогрева, который обеспечивает создание термонапряжений. Кроме того, оно включает дополнительное нагружающее устройство, обеспечивающее синхронное с нагревом нагружение механической силой вдоль оси пера лопатки.

На фиг.1 схематично показано теплозащитное покрытие столбчатой структуры, образованное, например, керамическими волокнами и нанесенное на лопатку.

На фиг.2 изображена схема устройства для испытаний рабочих лопаток ГТД или их моделей при образовании термонапряжений путем их фиксирования между жесткими мембранами.

На фиг.3 изображена схема устройства для испытаний лопаток или их моделей при создании термонапряжений с помощью неравномерного индукционного нагрева и приложения к рабочей лопатке или модели дополнительной растягивающей осевой нагрузки, имитирующей центробежную нагрузку.

Теплозащитное покрытие столбчатой структуры на фиг.1, образованное, например, керамическими волокнами 1, выращенными на металлическом подслое 2, нанесено на основной материал 3 лопатки 8 перпендикулярно ее поверхности. При вращении лопатки 8 керамические волокна 1, находящиеся в поле действия центробежной нагрузки Q, подвергаются изгибу, что вследствие низкой прочности на растяжение приводит к их быстрому разрушению. Основной материал 3 лопатки 8 под действием термонапряжений и центробежной нагрузки F также деформируется, что приводит к деформации подслоя 2, также влияющего на циклическую долговечность керамических волокон 1.

Устройство на фиг.2 включает соединенные стойками 4 жесткие мембраны 5, между которыми через динамометр 6 и захваты 7 закреплена лопатка 8 или модель с теплозащитным покрытием 1, например керамическими волокнами. К захватам 7 от регулируемого источника 9 подводится ток, разогревающий лопатку 8. Температура и цикл разогрева регулируется с помощью системы управления 10. С помощью силовозбудителя 11, система управления которого связана с системой управления нагревом, обеспечивается ускорение лопатки или модели, равное действующему при вращении лопатки турбины ГТД.

Устройство на фиг.3 включает осевое нагружающее устройство, например, в виде двух гидроцилиндров 12, закрепленных на траверсе 13, штоки которых перемещают траверсу 14. На траверсах через динамометр 6 с помощью захватов 7 зафиксирована лопатка 8 или ее модель с теплозащитным покрытием 1. Исследуемое сечение лопатки 8 или модели неравномерно разогревается бесконтактным способом с помощью индуктора 15, подсоединенного к регулируемому источнику 9 высокочастотного тока. Система управления устройства 10 обеспечивает циклический синхронный нагрев до заданной температуры и осевое нагружение с заданной силой. С помощью силовозбудителя 11, система управления которого связана с системой управления нагревом, обеспечивают ускорение лопатки 8 или модели, равное действующему при вращении лопатки турбины ГТД.

Заявляемое устройство по предлагаемому способу работает следующим образом.

Лопатка 8 или модель, установленные в захватах 7, нагреваются с помощью источника тока или высокочастотного генератора 9 до задаваемой системой управления устройства 10 температуры. Синхронно с изменением температуры лопатка 8 (или модель) подвергается действию нагрузки, возникающей под действием стеснения термически расширяющегося образца в жесткой раме, образованной стойками 4 и мембранами 5, или нагрузки, создаваемой гидроцилиндрами 12, закрепленными на нижней траверсе 13, при перемещении верхней траверсы 14. Изменение нагрузки происходит синхронно с нагревом и контролируется с помощью динамометра 6. При достижении температурой заданного уровня с помощью силовозбудителя 11 образцу сообщается ускорение, равное действующему при вращении лопатки турбины. Под действием ускорения керамическим волокнам ТЗП сообщается изгиб, равный по величине действующему в натурных условиях.

Заявляемый способ и устройство для его обеспечения позволяет проводить испытания лопаток и моделей с ТЗП с имитацией действующих факторов в лабораторных условиях, что существенно снижает стоимость разработки новых типов ТЗП и лопаток. Это дает возможность существенного повышения ресурса авиационных ГТД.

Источники информации

1. Кузнецов Н.Д., Цейтлин В.И., Волков В.И. Технологические методы повышения надежности деталей машин. М.: Машиностроение, 1993 г., с.135.

2. Бычков Н.Г., Лепешкин А.Р., Першин А.В. Установка для испытаний лопаток турбомашин на термомеханическую усталость. Патент РФ №2250451 (2005.04.20).

1.Способопределенияпрочностныхсвойстввысокотемпературныхтеплозащитныхпокрытийдеталей,преимущественнопокрытийстолбчатойструктуры,образованнойкерамическимиволокнами,направленнымиперпендикулярнокповерхности,накоторуюонинанесены,нанесенныхнадеталимашин,напримернарабочиелопаткитурбингазотурбинныхдвигателей(ГТД)илиихмодели,заключающийсявтом,чторабочиелопаткитурбинилиихмоделиподвергаютциклическомунагревуиохлаждениюдообразованиявлопаткахтурбинилиихмоделяхтрещин,илиповреждениясамоготеплозащитногопокрытия,отличающийсятем,чтовпроцессенагревапридостижениизаданноймаксимальнойтемпературывциклекрабочейлопаткеилимоделистеплозащитнымпокрытиемпонаправлениюдействияцентробежнойсилысоздаютускорение,равноецентробежному,действующемувсечениилопаткиспрогнозируемымнаибольшимповреждениемкерамическихволоконтеплозащитногопокрытия.12.Способпоп.1,отличающийсятем,чтовпроцессенагревапридостижениимаксимальнойтемпературысинхроннокрабочейлопаткеилимоделиприкладываютосевуюнагрузку,равнуюцентробежной,действующейвсечениирабочейлопаткиилимоделиспрогнозируемымнаибольшимповреждениемкерамическихволокон.23.Устройстводляопределенияпрочностныхсвойстввысокотемпературныхтеплозащитныхпокрытийдеталей,наносимыхнадеталимашин,напримернарабочиелопаткитурбингазотурбинныхдвигателей(ГТД)илиихмодели,содержащеерабочуюлопаткутурбиныилимодельстеплозащитнымпокрытием,преимущественностолбчатойструктуры,образованнойкерамическимиволокнами,направленнымиперпендикулярнокповерхности,накоторуюонинанесены,устройстводлякреплениялопатки,устройстводлянагрева,индуктор,подсоединенныйкисточникувысокочастотноготока,системуохлаждениярабочейлопаткиилимодели,системууправлениятемпературой,отличающеесятем,чтоустройстводополнительносодержитнагружающееустройство,обеспечивающеесинхронноесизменениемтемпературынагружениелопаткиилимоделинагрузкой,имитирующейцентробежную,динамическийсиловозбудитель,которыйсоздаетускорениевдольосилопатки,исистемууправлениянагруженном,котораясвязанассистемойуправлениянагревом,приэтомустройстводлякреплениялопаткиилимоделиснабженомембранами,имеющимижесткостьвыше,чемжесткостьрабочейлопаткиилимодели,мембранысоединеныстойками,междукоторымичерездинамометризахватыфиксируетсялопаткаилимодель,захватысоединенысрегулируемымисточником,откоторогокзахватамподводитсявысокочастотныйток,разогревающийлопаткуилимодель.3
Источник поступления информации: Роспатент

Показаны записи 81-90 из 204.
10.05.2018
№218.016.393b

Межроторная опора газотурбинного двигателя

Изобретение относится к области авиационного моторостроения и может быть использовано в межроторных опорах газотурбинных двигателей. Межроторная опора газотурбинного двигателя включает подшипник скольжения, содержащий внутреннее кольцо подшипника, выполненное из композиционного материала на...
Тип: Изобретение
Номер охранного документа: 0002647021
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3a33

Способ исследования теплозащитных свойств высокотемпературных покрытий и устройство для его осуществления

Изобретение относится к области технической физики, а именно к способам исследования теплозащитных свойств высокотемпературных покрытий и устройствам для их осуществления, и может быть использовано при испытаниях высокотемпературных покрытий деталей преимущественно газотурбинных двигателей...
Тип: Изобретение
Номер охранного документа: 0002647562
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.43e6

Способ полетной диагностики авиационного турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к авиадвигателестроению, касается определения в полете параметров двухконтурного турбореактивного двигателя со смешением потоков и может быть использовано для диагностики его состояния в условиях эксплуатации. Предварительно измеряют степень неравномерности полного...
Тип: Изобретение
Номер охранного документа: 0002649715
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.448c

Акустическая форсунка

Изобретение относится к области энергетики и может использоваться для высококачественного распыливания жидкого топлива. Акустическая форсунка для распыливания жидкого топлива содержит цилиндрический полый корпус с каналом подвода газа и сверхзвуковым соплом, расположенным в торцевой части...
Тип: Изобретение
Номер охранного документа: 0002650017
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.4b44

Стенд для измерения нагрузок, воздействующих на объект авиационной техники

Изобретение относится к устройствам, предназначенным для аэродинамических испытаний, и может быть использовано в авиастроении. Стенд включает динамометрическую платформу, предназначенную для закрепления объекта, установленную посредством по меньшей мере четырех пластин переменной жесткости на...
Тип: Изобретение
Номер охранного документа: 0002651627
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b6d

Способ определения температуры торможения газового потока

Изобретение относится к области технической физики, а именно к способам определения температуры торможения газового потока, и может быть использовано при длительном локальном измерение полной температуры набегающего потока в элементах газотурбинных двигателей, например в переходных каналах, на...
Тип: Изобретение
Номер охранного документа: 0002651626
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4f3d

Пневматическое устройство для испытания конструкции двигателя летательного аппарата на ударное воздействие

Изобретение относится к области технической физики, а именно к пневматическим устройствам для испытания конструкции двигателя летательного аппарата на ударное воздействие и может быть использовано при экспериментальных исследованиях и стендовых испытаниях на устойчивость элементов конструкции...
Тип: Изобретение
Номер охранного документа: 0002652658
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4fb1

Авиационная силовая установка

Авиационная силовая установка содержит турбокомпрессорный блок, батарею твердооксидных топливных элементов с выходами для анодного и катодного газов, отдельно расположенный тяговый вентилятор, топливный насос. Турбокомпрессорный блок включает контур низкого давления и контур высокого давления с...
Тип: Изобретение
Номер охранного документа: 0002652842
Дата охранного документа: 03.05.2018
10.05.2018
№218.016.4fbf

Способ защиты корпуса лопаточных машин и устройство, реализующее способ

Изобретение относится к области машиностроения, а именно к способам защиты корпуса лопаточных машин от пробиваемости при обрыве лопатки и устройствам, реализующим указанный способ, и может быть использовано в вентиляторах и/или компрессорах газотурбинных двигателей, в том числе в авиадвигателях...
Тип: Изобретение
Номер охранного документа: 0002652857
Дата охранного документа: 03.05.2018
29.05.2018
№218.016.52c2

Стенд для испытания агрегатов систем смазки на масловоздушной смеси

Изобретение относится к области испытательной техники, а именно к стендам для испытания агрегатов систем смазки на масловоздушной смеси, и может быть использовано при диспергировании смешиваемых фаз при испытании систем смазки авиационных двигателей. Сущность изобретения состоит в том, что...
Тип: Изобретение
Номер охранного документа: 0002653867
Дата охранного документа: 15.05.2018
Показаны записи 11-11 из 11.
10.07.2019
№219.017.b060

Способ диагностики радиального зазора в шарикоподшипниках

Изобретение относится к области машиностроения и может быть использовано в технологических процессах виброконтроля и вибродиагностики состояния шарикоподшипников машин, например газотурбинных двигателей. Изобретение направлено на повышение производительности, информативности и качества...
Тип: Изобретение
Номер охранного документа: 0002432560
Дата охранного документа: 27.10.2011
+ добавить свой РИД