×
08.03.2019
219.016.d30e

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники, в частности к анодированию сплавов титана, и может быть использовано в травматологии, ортопедии и стоматологии. Способ включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, содержащем раствор фосфорной кислоты с концентрацией 10%, порошок СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм, при этом электролит дополнительно содержит 2,5-15 мас.% раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%, а анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс. Технический результат: получение эластичных и пористых покрытий на имплантате. 5 ил., 1 табл., 5 пр.

Изобретение относится к области электролитического нанесения покрытий с помощью химических реакций на поверхности, а именно к анодированию тугоплавких металлов или их сплавов и может быть использовано в травматологии, ортопедии и стоматологии.

Известен способ нанесения покрытия на имплантат из титана и его сплавов [RU 2221904 С1, МПК (2000.01) C25D 11/26, A61F 2/02, опубл. 20.01.2004], выбранный в качестве прототипа, включающий анодирование имплантата импульсным или постоянным током в условиях искрового разряда при напряжении 90-200 В с частотой следования импульсов 0,5-10,0 Гц при температуре 20-35°С в растворе фосфорной кислоты в течение 10-30 мин при постоянном перемешивании. Анодирование ведут в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО до пересыщенного состояния, или в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО до пересыщенного состояния и дополнительно 5-10% суспензии гидроксиапатита дисперсностью менее 70 мкм для создания суспензии.

Толщина полученных покрытий составляет 5-40 мкм.

Техническим результатом предложенного изобретения является разработка способа формирования покрытия на имплантате из сплава титана, позволяющего получить эластичные и пористые покрытия.

Способ формирования покрытия на имплантате из сплава титана, также как в прототипе включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, состоящем из раствора фосфорной кислоты с концентрацией 10%, порошка СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм.

Согласно изобретению анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в электролите, дополнительно содержащем 2,5-15 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%.

Предложенный способ формирования покрытия на имплантате из сплавов титана позволяет получить пористые покрытия с эластичностью 1 мм, толщиной 2-5 мкм. Количество пор на 1500 мкм2 составляет от 3925±535 до 8311±736 шт. с диаметром пор на поверхности покрытий от 0,6±0,3 до 0,8±0,3 мкм.

Таким образом, полученные покрытия по сравнению с прототипом обладают большим количеством и диаметром пор, что способствует лучшей интеграции имплантата в живой организм. Эластичность покрытий увеличена минимум на 6 мм. Количество пор увеличено на 393-4779 шт. на 1500 мкм2, а диаметр пор на поверхности покрытий - на 0,1-0,3 мкм.

На фиг. 1-4 приведены снимки поверхности покрытия на имплантате, сформированного предложенным способом.

На фиг. 5 приведен снимок поверхности покрытия на имплантате, сформированного способом-прототипом.

В таблице 1 представлены результаты осуществления способа.

Использовали имплантаты размером 50×20×0,5 мм3 из сплава титана ВТ-6, которые для удаления оксидной пленки и загрязнений подвергали травлению в водном растворе азотной и плавиковой кислот, взятых в объемных отношениях HN:HF:H2O=1:2,5:2,5, при температуре 15-20°С в течение 10-15 секунд с последующей нейтрализацией в 1% водном растворе гидроксида натрия и многократной промывкой дистиллированной водой.

Пример 1

Для получения электролита подготовили раствор фосфорной кислоты с концентрацией 10%, к которому добавили порошок СаО до пересыщенного состояния, 10% порошок гидроксиапатита дисперсностью менее 70 мкм, и 2,5 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в 4,5% уксусной кислоте.

Полученный электролит вылили в электролитическую ванну, поместили в нее подготовленный имплантат и формировали покрытие с использованием установки для микродугового оксидирования [https://doi.org/10.1063/1.5001611].

Через раствор пропустили ток положительной полярности с напряжением 170 В со скоростью подъема напряжения 1 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 15 минут. Процесс вели при температуре 10°С при постоянном перемешивании.

После формирования покрытия, имплантат извлекли из электролитической ванны, промыли под проточной водой в течение 15 минут и прокипятили в дистиллированной воде в течение часа. После извлечения из дистиллированной воды поверхность имплантата осушили безворсовой салфеткой и поместили в воздушный стерилизатор для окончательного выпаривания влаги при температуре 105°С в течение 30 минут.

Исследование морфологии поверхности покрытия имплантата провели с помощью сканирующей электронной микроскопии, используя электронный микроскоп JEOL-6000. Морфология полученной поверхности покрытия показана на снимке, представленном на фиг. 1.

Измерение диаметра и подсчет количества пор на полученном снимке было проведено с помощью программы «ImageJ». Количество пор составило 3925±535 шт. на 1500 мкм2. Диаметр пор составил 0,6±0,3 мкм (таблица 1). Эластичность полученного покрытия, измеренная с использованием прибора «Изгиб», составила 1 мм. Толщина покрытия, измеренная с помощью прибора для измерения геометрических параметров КОНСТАНТА К5, составила 2 мкм.

Пример 2.

Состав используемого электролита, отличался от примера 1, использованием 5 мас. % раствора хитозана. Покрытие формировали при напряжении 180 В со скоростью подъема напряжения 2 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 20 минут. Процесс вели при температуре 15°С. На фиг. 2 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 3.

Состав используемого электролита, отличался использованием 10 мас. % раствора хитозана. Покрытие формировали при напряжении 190 В со скоростью подъема напряжения 3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 20 минут. Процесс вели при температуре 20°С. На фиг. 3 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 4.

Состав используемого электролита, отличался от приведенного в примере 1, использованием 15 мас. % раствора хитозана. Покрытие формировали при напряжении 200 В со скоростью подъема напряжения 3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 30 минут. Процесс вели при температуре 10°С. На фиг. 4 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 5.

Для нанесения покрытия по способу-прототипу подготовили раствор электролита, состоящий из фосфорной кислоты с концентрацией 10%, к которому добавили порошок СаО до пересыщенного состояния и 10% порошок гидроксиапатита дисперсностью менее 70 мкм.

Полученный электролит вылили в электролитическую ванну, поместили в нее подготовленный имплантат и формировали покрытие с использованием установки для микродугового оксидирования. Через раствор пропустили ток положительной полярности с напряжением 200 В, с частотой следования импульсов 10 Гц в течение 30 минут. Процесс вели при температуре 20°С при постоянном перемешивании. На фиг. 5 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА

Способ формирования покрытия на имплантате из сплава титана, включающий анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, состоящем из раствора фосфорной кислоты с концентрацией 10%, порошка СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм, отличающийся тем, что электролит дополнительно содержит 2,5-15 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%, а анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс.
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА
Источник поступления информации: Роспатент

Показаны записи 121-130 из 255.
19.01.2018
№218.016.0487

Интегральный микромеханический гироскоп

Изобретение относится к гироскопическим приборам, а именно к датчикам угловой скорости, основанным на Кориолисовых силах, и может быть использовано для измерения угловой скорости. Интегральный микромеханический гироскоп, выполненный из полупроводникового материала, содержит рамку, закрепленную...
Тип: Изобретение
Номер охранного документа: 0002630542
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0559

Устройство пожаротушения

Изобретение относится к противопожарной технике, а именно к тушению пожаров при возгораниях на больших площадях, и может быть использовано для локализации и ликвидации крупных лесных пожаров, а также при подавлении возгораний промышленных и общественных объектов. Устройство пожаротушения...
Тип: Изобретение
Номер охранного документа: 0002630653
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0817

Стенд для изучения характеристик горения и сжигания витающей капли органоводоугольного топлива

Изобретение относится к экспериментальному оборудованию, а именно к исследованию процессов тепломассопереноса, фазовых превращений и химического реагирования при зажигании одиночных капель различных по компонентному составу органоводоугольных топлив в газовой среде окислителя. Стенд для...
Тип: Изобретение
Номер охранного документа: 0002631614
Дата охранного документа: 25.09.2017
19.01.2018
№218.016.0866

Электроимпульсное буровое долото

Изобретение относится к электроимпульсному буровому долоту. Техническим результатом является повышение эффективности бурения. Электроимпульсное буровое долото содержит коаксиально расположенные и разделенные высоковольтным сплошным изолятором заземленную и высоковольтную коронки, причем...
Тип: Изобретение
Номер охранного документа: 0002631749
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.0885

Способ защиты параллельных линий

Использование: в области электротехники. Технический результат: повышение надежности защиты параллельных линий. Способ защиты параллельных линий заключается в измерении мгновенных значений токов i и i в одноименных фазах первой и второй линий при нарастании токов и сравнении их с заданной...
Тип: Изобретение
Номер охранного документа: 0002631679
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.12d9

Способ изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий

Изобретение относится к способу изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий и может быть использовано для напыления кальций-фосфатных покрытий на поверхность медицинских имплантатов. Способ включает использование порошка синтетического гидроксиапатита...
Тип: Изобретение
Номер охранного документа: 0002634394
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.1c09

Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения

Изобретение относится к электротехнике, в частности к электроприводам переменного тока периодического движения, и может быть использовано при создании вибрационных электроприводов сканирования, техники измерения, контроля и управления, а также в автоматизированных электроприводах механизмов с...
Тип: Изобретение
Номер охранного документа: 0002640352
Дата охранного документа: 28.12.2017
20.01.2018
№218.016.1c13

Способ защиты с приемной стороны двух параллельных линий с односторонним питанием

Использование – в области электротехники. Технический результат - повышение надежности защиты с приемной стороны двух параллельных линий с односторонним питанием. Согласно способу защиты с приемной стороны двух параллельных линий с односторонним питанием измеряют мгновенные значения тока i и i...
Тип: Изобретение
Номер охранного документа: 0002640353
Дата охранного документа: 28.12.2017
20.01.2018
№218.016.1c95

Способ шароструйного бурения скважин

Изобретение относится к шароструйному бурению скважин и может быть использовано для бурения геологоразведочных, технологических, геотермальных и других скважин в твердых горных породах. Способ шароструйного бурения скважин заключается в спуске на забой породоразрушающих шаров, подаче...
Тип: Изобретение
Номер охранного документа: 0002640445
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1cf2

Буровой раствор

Изобретение относится к составам для бурения скважин. Технический результат – расширение арсенала средств, получение бурового раствора со следующими свойствами: плотность 1,16-1,17 г/см, вязкость 43 сР, условная вязкость 43 с/л. Буровой раствор содержит, мас.%: фторангидрит 16,7-24,4;...
Тип: Изобретение
Номер охранного документа: 0002640449
Дата охранного документа: 09.01.2018
Показаны записи 21-22 из 22.
01.09.2019
№219.017.c55b

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Способ прогнозирования износостойкости твердосплавных группы...
Тип: Изобретение
Номер охранного документа: 0002698490
Дата охранного документа: 28.08.2019
05.04.2020
№220.018.135f

Импульсный генератор

Изобретение относится к импульсной технике. Технический результат: формирование высоковольтных сильноточных импульсов с устойчивым передним фронтом выходных импульсов. Для этого предложен импульсный генератор, который содержит первый источник питания 1, два дросселя 2 и 3, две конденсаторные...
Тип: Изобретение
Номер охранного документа: 0002718420
Дата охранного документа: 02.04.2020
+ добавить свой РИД