×
02.03.2019
219.016.d200

Результат интеллектуальной деятельности: Устройство магнитной дефектоскопии ободьев колесной пары

Вид РИД

Изобретение

№ охранного документа
0002680857
Дата охранного документа
28.02.2019
Аннотация: Изобретение относится к устройствам исследования или анализа ферромагнитных материалов для обнаружения локальных дефектов с помощью магнитных средств. Устройство магнитной дефектоскопии ободьев колесной пары содержит электромагнит с сердечником, возбуждающий магнитный поток на исследуемых участках ободьев, и средства обнаружении на них аномалий магнитного поля, отличающийся тем, что колесную пару устанавливают на два валка, форма которых обеспечивает максимальное пятно контакта с ободьями колесной пары, в качестве сердечника электромагнита используют оси валков, в качестве средства обнаружении аномалий магнитного поля используют датчики магнитного поля, которые неподвижно размещают между пятнами контакта колесной пары и валков, смещают исследуемые участки ободьев колесной пары путем совместного вращения колесной пары и валков. Технический результат – повышение точности и производительности обнаружения дефектов в ободьях колесных пар. 1 ил.

Изобретение относится к устройствам исследования или анализа ферромагнитных материалов для обнаружения локальных дефектов с помощью магнитных средств. В частности, с применением метода рассеяния (вытеснения) магнитного потока или Magnetic flux leakage (expulsion) (MFL). Изобретение может быть использовано при производстве, ремонте и т.п.колесных пар для обследования состояния их ободьев.

Известно, что согласно нормативным документам российских железных дорог (РЖД) [1] при дефектоскопии колесных пар основными способами контроля колесных пар являются:

1. Ультразвуковой (УЗ) - для контроля оси, обода, приободной зоны диска, перехода от диска к ступице, гребня, кромки ступицы и поверхности катания, например, [2]. Недостатки УЗ методов контроля состоят в сложности обеспечения акустического контакта излучателя-датчика с поверхностью объекта исследования, заданных углов прозвучивания и т.п.

2. Вихретоковый (ВТ) контроль используется для дефектоскопии упорного кольца буксового подшипника, латунного сепаратора подшипника буксового узла, роликов подшипников буксового узла и других мелких деталей. ВТ контроль обеспечивает лишь приповерхностную дефектоскопию (до 2,7 мм), например, [3] Патент RU 2493561.

3. Магнитный контроль (МК), который предлагается для контроля оси колесной пары и всех других цилиндрических поверхностей. МК является наиболее достоверным дефектоскопическим способом, обеспечивающим достаточный по глубине (до 20 мм и более) и повторяемый результат зондирования исследуемого объекта.

Способы магнитной дефектоскопии заключаются в создании магнитного потока на исследуемых участках ферромагнитных объектов. Поверхностные и внутренние дефекты объекта исследования вызывают неоднородности магнитного поля, которые могут быть обнаружены соответствующими средствами и позволяют оценить дефект. Устройства магнитной дефектоскопии отличаются

1. Способами и средствами намагничивания объекта исследования.

2. Типами сигналов, использующихся для намагничивания.

3. Способами приема и оценки сигналов аномалий магнитного поля.

В качестве способов и средств намагничивания могут использоваться [3] постоянные или электромагниты, ориентированные различными способами относительно исследуемого объекта. Постоянные магниты не могут создавать поле большой амплитуды и соответственно большую глубину зондирования. Электромагниты позволяют создавать мощное магнитное поле, проникающее в объект до 20 мм и более, доводящее ферромагнитный объект исследования до состояния близкого к магнитному насыщению, при котором аномалии магнитного поля можно зафиксировать на поверхности объекта исследования.

При МД большое значение имеет средство возбуждения магнитного поля в объекте исследования. Обычно в качестве такого средства используется П-образный магнит (постоянный или электромагнит). При этом магнитная дефектоскопия обычно осуществляется ручным перемещением зондирующих приборов, т.е. длительно и трудоемко. Проблемой МД в этом случае является обеспечение контакта полюсов излучателя магнитного поля с исследуемым объектом, связанная, например, с шероховатостью исследуемого объекта. Зазор между излучателем магнитного поля и объектом исследования приводит к существенным потерям энергии пропорциональным зазору в третьей степени.

В качестве зондирующих сигналов могут использоваться постоянное, переменное или импульсное возбуждение. В рассматриваемом применении наиболее перспективным является возбуждение магнитного потока электромагнитами постоянного тока.

В качестве средств обнаружения аномалий магнитного поля при МД в РЖД рекомендуют использовать [4]. Этот способ реализован, например, в [5].

Магнитопорошковый способ оценки аномалий магнитного поля является не точным из-за малой глубины обнаружения дефектов, субъективным и не позволяет точно определить характеристики дефекта.

Известно устройство магнитной дефектоскопии [6], в котором под поверхностью катания рельса устанавливают встроенные постоянные магниты и датчики аномалий магнитного поля.

Идея построения устройства состоит в том, что в поверхность рельса на участке большем, чем длина обода колеса, встраивают множество излучателей магнитного поля - постоянных магнитов и приемников аномальных магнитных сигналов. Несомненным достоинством данного способа является возможность его использования на действующем подвижном составе без демонтажа колесных пар.

Недостатком данного устройства является малая глубина обнаружения дефектов, обусловленная слабой степенью намагничивания постоянными магнитами и, соответственно, низкое качество обнаружения дефектов.

Наиболее близким к заявляемому изобретению является устройство магнитной дефектоскопии ободьев диагностируемой колесной пары, [7], содержащее электромагнит с сердечником, возбуждающий магнитный поток на исследуемых участках ободьев и средство обнаружении на них аномалий магнитного поля.

В устройстве [7] создание магнитного потока в исследуемых участках ободьев колесных пар осуществляется П-образными электромагнитами, контактирующими с ободьями колесных пар. Обнаружение аномалий магнитного поля производится с использованием магнитного порошка. Измерения проводят ручным перемещением по ободьям намагничивающего устройства. Такой способ создания магнитного потока и его оценки используется во множестве применений для обследования объектов сложной формы: труб, канатов и т.п.

Недостатками устройства [7] являются низкие точность и производительность дефектоскопии.

Низкая точность обусловлена:

- Проблемами с обеспечением контакта П-образного магнитного возбудителя магнитного поля с объектом исследования - ободом рельса имеющем сложную форму.

- Малой мощностью ручного электромагнита, приводящая к малой глубине обнаружения дефектов.

- Магнитопорошковым способом обнаружения и оценки дефектов.

Низкая производительность измерений обусловлена:

- ручным характером проведения измерений с необходимостью перемещения измерительного инструмента и (или) колесной пары, выбора шага измерений и т.п.;

- магнитопорошковым способом оценки, требующим нанесения порошка или суспензии на область исследования и визуальной оценкой результатов.

Техническими результатами использования заявляемого изобретения является повышение точности и производительности обнаружения дефектов в ободьях колесных пар.

Поставленный технический результат достигается за счет того, что в устройстве магнитной дефектоскопии ободьев колесной пары, содержащем электромагнит с сердечником, возбуждающий магнитный поток на исследуемых участках ободьев и средства обнаружении на них аномалий магнитного поля, дополнительно предусмотрена установка колесной пары на два валка, форма которых обеспечивает максимальное пятно контакта с ободьями колесной пары, в качестве сердечника электромагнита используют оси валков, в качестве средства обнаружении аномалий магнитного поля используют датчики магнитного поля, которые неподвижно размещают между пятнами контакта колесной пары и валков, смещают исследуемые участки ободьев колесной пары путем совместного вращения колесной пары и валков.

Существенными отличиями заявляемого устройства магнитной дефектоскопии ободьев диагностируемой колесной пары по сравнению с прототипом являются:

Колесную пару устанавливают на два валка, которые позволяют легко перемещать ее, используя, например, привод валка.

В прототипе дефектоскопию колесной пары проводят путем ручного перемещения П-образного электромагнита по ободу первого, а затем второго колеса.

Форму валков выполняют так, чтобы обеспечить максимальное пятно (зона) их контакта с ободьями диагностируемой колесной пары. Такое исполнение позволяет пропустить достаточно большое поле намагничивания через зону контакта.

В прототипе качество магнитопровода, образованного контактом П-образного электромагнита с ободом колеса недостаточно для пропускания большого магнитного потока.

В качестве сердечника электромагнита используют оси валков, что позволяет возбудить достаточно мощное магнитное поле и добиться большой глубины дефектоскопии.

В прототипе ручной П-образный электромагнит возбуждает небольшое магнитное поле, которое позволяет обнаружить лишь приповерхностные дефекты. Плоские поверхности полюсов магнита не согласованы с формой сканируемой поверхности обода колеса.

В качестве средства обнаружении аномалий магнитного поля используют датчики магнитного поля, что дает большую точность обнаружения и оценки дефектов.

В прототипе магнитопорошковый способ трудоемок и позволяет лишь качественно оценить приповерхностные дефекты.

Датчики магнитного поля неподвижно размещают между пятнами контакта колесной пары и валков, что позволяет постоянно (с любым шагом) обнаруживать дефекты.

В прототипе датчиков магнитного поля нет.

Смещают исследуемые участки ободьев колесной пары путем совместного вращения колесной пары и валков. Такой вариант дефектоскопии всего обода колесной пары позволяет провести измерения более быстро и точно, в том числе автоматизированном способом.

В прототипе ручное перемещение П-образного электромагнита по ободу колеса отличает высокая трудоемкость и длительность. Не ясен также вопрос с шагом перемещения, обеспечивающим заданное разрешение.

Принципиальными преимуществами заявляемого устройства являются:

1. Использование MFL технологии, которая позволяет, используя большую амплитуду намагничивающих сигналов, добиться большой глубины дефектоскопии.

2. Хороший механический и магнитный контакт валков и колесных пар позволяет минимизировать потери энергии в точках контакта устройства намагничивания и исследуемого объекта.

3. Использование датчиков аномалий магнитного поля (катушек индуктивности, датчиков Холла и т.п.), позволяет более точно обнаружить и оценить характер дефекта.

Заявляемое устройство иллюстрируют следующие графические материалы.

Фиг. 1 - конструкция заявляемого устройства, где:

1. Колесная пара.

2. Валки.

3. Катушка электромагнита.

4. Магнитный поток.

5. Датчики магнитного поля.

6. Ось валка 2.

Рассмотрим возможность реализации заявляемого устройства.

Валки 2 изготавливают из ферромагнитного материала и вращательно устанавливают в станину, которая на Фиг. 1 не показана с целью упрощения. Станина должна быть выполнена из немагнитного материала, чтобы не допустить утечек магнитного поля. Форма валков 2 выполняется так, чтобы обеспечить максимальное пятно контакта с ободьями диагностируемой колесной пары, т.е. с поверхностью катания колес. На оси 6 валков 2 устанавливают достаточно мощные катушки электромагнитов 3 (соленоиды) с согласованным направлением создания магнитного поля. Один из валков 2 может быть снабжен приводом для вращения колесной пары 1 и второго валка 2.

Колесную пару 1 устанавливают на валки 2. При включении электромагнитов 3 возникает магнитный поток, который проходит по кратчайшему пути: ось первого валка → пятно контакта первого валка 2 и первого колеса колесной пары 1 → участок обода первого колеса колесной пары 1 (исследуемый участок обода) → пятно контакта второго валка 2 и первого колеса колесной пары → ось второго валка и т.д., см. Фиг. 1. В результате исследуемые участки ободьев колесных пар между пятнами контакта окажутся намагниченными в степени близкой к насыщению. Глубина проникновения магнитного поля может составлять 20 мм и более.

Между пятнами контакта устанавливают датчики магнитного поля 5, воспринимающие аномалии магнитного поля, которые возникают в окрестности дефектов. При возникновении сигнала от датчиков 5 легко определить местоположение дефекта на соответствующем ободе колеса, а по амплитуде сигнала - степень опасности дефекта. Количество датчиков 5 может быть различным: от одного (большого) - для обнаружения дефекта в исследуемом участке обода колеса, до нескольких - для локализации обнаруженного дефекта по ширине обода.

При совместном вращении валков 2 и колесной пары 1 исследуемый участок смещается относительно датчиков 5, позволяя последовательно провести дефектоскопию ободьев колесной пары.

Таким образом, заявляемое устройство может быть реализовано и обеспечивает повышение точности измерений и производительности контроля.

Источники информации:

1. НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ ДЕТАЛЕЙ ВАГОНОВ / Общие положения. РУКОВОДЯЩИЙ ДОКУМЕНТ РД 32.174-2001, (http://consult-nk.ru/uploads/files/2014-09/1411371581_rd-32.1742001-nerazrushayuschiy-kontrol-detaley-vagonov.-obschi/e-polozheniya.pdf) (Приложение А, Таблица А.1, стр. 15-16).

2. Патент RU 78323.

3. ГОСТ Р 55680-2013 Контроль неразрушающий. Феррозондовый метод http://www.internet-law.ru/gosts/gost/55426/.

4. МАГНИТОПОРОШКОВЫЙ МЕТОД НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ДЕТАЛЕЙ ВАГОНОВ. Руководящий документ. РД 32.159-2000. http://consult-nk.ru/uploads/files/2014-09/1411131614_rd-32.159-2000-magnitoporoshkovyy-metod-nerazrushayuschego-kontrolya-detaley-vagonov.pdf.

5. Патент RU 2518954.

6. Jinyi Lee, Seokjin Kwon. Non-Destructive Testing of a Train Wheel using a Linearly Integrated Hall Sensor Array2011 IEEE Sensors Applications Symposium (SAS), Page(s): 268-272 (КОРЕЯ).

7. Мотовилов К.В. Методические указания к лабораторным работам. - М.: МИИТ, 2005. - 110 рис 2. 11, с. http://library.miit.ru/methodics/22_08_2012/04-35080.pdf

Устройство магнитной дефектоскопии ободьев колесной пары, содержащее электромагнит с сердечником, возбуждающий магнитный поток на исследуемых участках ободьев, и средства обнаружении на них аномалий магнитного поля, отличающийся тем, что колесную пару устанавливают на два валка, форма которых обеспечивает максимальное пятно контакта с ободьями колесной пары, в качестве сердечника электромагнита используют оси валков, в качестве средства обнаружении аномалий магнитного поля используют датчики магнитного поля, которые неподвижно размещают между пятнами контакта колесной пары и валков, смещают исследуемые участки ободьев колесной пары путем совместного вращения колесной пары и валков.
Устройство магнитной дефектоскопии ободьев колесной пары
Устройство магнитной дефектоскопии ободьев колесной пары
Источник поступления информации: Роспатент

Показаны записи 11-15 из 15.
05.02.2020
№220.017.fdfc

Способ ультразвукового обнаружения продольных трещин в головке рельса

Использование: для ультразвукового обнаружения продольных трещин в головке рельса. Сущность изобретения заключается в том, что на поверхность катания рельса устанавливают первый электроакустический преобразователь, ориентированный попрек головки рельса на нижнюю выкружку головки со стороны...
Тип: Изобретение
Номер охранного документа: 0002712975
Дата охранного документа: 03.02.2020
02.03.2020
№220.018.07f3

Намагничивающее устройство дефектоскопа

Изобретение относится к области неразрушающего контроля. Намагничивающее устройство дефектоскопа содержит два идентичных магнита, обращенные друг к другу одноименными полюсами, при этом между магнитами установлен магнитопровод в виде диска с возможностью качения по сканируемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002715473
Дата охранного документа: 28.02.2020
25.04.2020
№220.018.18aa

Способ высокоскоростной ультразвуковой дефектоскопии с использованием эффекта доплера

Использование: для высокоскоростной ультразвуковой дефектоскопии с использованием эффекта Доплера. Сущность изобретения заключается в том, что в процессе относительного движения бесконтактного акустического преобразователя и контролируемого изделия излучают в изделие ультразвуковые колебания на...
Тип: Изобретение
Номер охранного документа: 0002720043
Дата охранного документа: 23.04.2020
29.05.2020
№220.018.2176

Способ бесконтактной ультразвуковой дефектоскопии с использованием эффекта доплера

Использование: для бесконтактной ультразвуковой дефектоскопии с использованием эффекта Доплера. Сущность изобретения заключается в том, что в процессе относительного движения бесконтактного акустического преобразователя и контролируемого изделия на заданной частоте излучают в изделие...
Тип: Изобретение
Номер охранного документа: 0002722089
Дата охранного документа: 26.05.2020
06.07.2020
№220.018.2f94

Способ ультразвукового контроля изделий с эквидистантными поверхностями

Использование: для неразрушающего контроля изделий с эквидистантными поверхностями ультразвуковым зеркально-теневым методом. Сущность изобретения заключается в том, что с помощью наклонного электроакустического преобразователя с заданным шагом излучают в изделие зондирующие ультразвуковые...
Тип: Изобретение
Номер охранного документа: 0002725705
Дата охранного документа: 03.07.2020
Показаны записи 11-20 из 39.
20.01.2018
№218.016.1481

Устройство магнитной дефектоскопии рельсов

Изобретение относится к методам неразрушающего контроля материалов путем исследования магнитных полей рассеяния и может быть использовано при высокоскоростной двухниточной дефектоскопии рельсов. Устройство магнитной дефектоскопии рельсового пути содержит электромагнитные катушки, установленные...
Тип: Изобретение
Номер охранного документа: 0002634806
Дата охранного документа: 03.11.2017
13.02.2018
№218.016.2468

Способ комплексной диагностики рельсов

Способ комплексной диагностики рельсов относится к контрольно-измерительным устройствам для проверки состояния железнодорожных путей и может быть использовано при исследовании рельсового пути комплексом средств неразрушающего контроля, в том числе и для обнаружения микротрещин на поверхности...
Тип: Изобретение
Номер охранного документа: 0002642687
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.33f0

Способ ультразвукового контроля подошвы рельсов

Использование: для обнаружения дефектов в подошве рельсов. Сущность изобретения заключается в том, что с внутренней стороны относительно колеи рельсов во внешнее перо и внутреннее перо подошвы рельса излучают поперечные ультразвуковые колебания и принимают отраженные ультразвуковые колебания,...
Тип: Изобретение
Номер охранного документа: 0002645818
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3421

Измеритель магнитного дефектоскопа протяженного изделия сложной формы

Изобретение относится к средствам магнитной дефектоскопии, предназначенным для обнаружения дефектов в протяженных ферромагнитных изделиях с постоянным и сложным поперечным сечением. Измеритель магнитного дефектоскопа протяженного изделия сложной формы содержит блок намагничивания, выполненный в...
Тип: Изобретение
Номер охранного документа: 0002645830
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.434a

Электромагнитно-акустический преобразователь для ультразвукового контроля

Использование: для обнаружения дефектов в изделиях из электропроводящего материала бесконтактным способом. Сущность изобретения заключается в том, что электромагнитно-акустический преобразователь содержит узел намагничивания контролируемого изделия в виде двуосной тележки, соленоиды...
Тип: Изобретение
Номер охранного документа: 0002649636
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.46a5

Способ обнаружения и определения размеров дефекта

Использование: для ультразвукового (УЗ) неразрушающего контроля, в частности, металлических изделий. Сущность изобретения заключается в том, что выбирают несколько плоскостей зондирования, пересекающихся по одной линии. В каждой из плоскостей устанавливают не менее трех взаимно направленных пар...
Тип: Изобретение
Номер охранного документа: 0002650414
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4d41

Способ ультразвукового обнаружения микротрещин на поверхности катания головки рельса

Изобретение относится к области ультразвукового неразрушающего контроля железнодорожных рельсов. Способ заключается в том, что на поверхности катания рельса устанавливают три наклонных электроакустических преобразователя, смещенных от продольной оси рельса в сторону, противоположную от рабочей...
Тип: Изобретение
Номер охранного документа: 0002652511
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4ee4

Способ определения стрелочных переводов и положения остряков

Изобретение относится к железнодорожному транспорту, а именно к способам и устройствам для идентификации элементов железнодорожного пути, в частности стрелочных переводов, и может быть использовано в компьютеризированных дефектоскопических и путеизмерительных диагностических вагонах,...
Тип: Изобретение
Номер охранного документа: 0002652673
Дата охранного документа: 28.04.2018
29.05.2018
№218.016.534b

Устройство электромагнитно-акустического контроля рельсов

Изобретение относится к области неразрушающего контроля при реализации ультразвуковых бесконтактных методов дефектоскопии для обнаружения дефектов в рельсах на значительных скоростях сканирования. Устройство электромагнитно-акустического контроля рельсов содержит тестовое колесо с множеством...
Тип: Изобретение
Номер охранного документа: 0002653663
Дата охранного документа: 11.05.2018
14.07.2018
№218.016.7144

Способ бесконтактного неразрушающего контроля и устройство для его осуществления

Изобретение относится к области неразрушающего контроля при реализации магнитных и ультразвуковых бесконтактных методов дефектоскопии для обнаружения дефектов и определения геометрических размеров изделий на значительных скоростях сканирования. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002661312
Дата охранного документа: 13.07.2018
+ добавить свой РИД