×
01.03.2019
219.016.d0be

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ С p-n ПЕРЕХОДАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным структурам, используемым, в частности, в фотоэлектрических преобразователях. Способ изготовления полупроводниковой структуры включает последовательное формирование на полупроводниковой подложке методом эпитаксиального выращивания слоев n-типа проводимости и p-типа проводимости, образующих не менее двух сопряженных друг с другом двухслойных компонентов с n-p или p-n переходами между слоями, согласно изобретению каждые два соседних компонента сопряжены друг с другом посредством введенных в зону сопряжения компонентов микрочастиц из проводящего или полупроводникового материала, размеры которых превышают толщину области пространственного заряда в рассматриваемой зоне сопряжения. Изобретение обеспечивает повышение эффективности фотоэлектрического преобразования. 1 з.п. ф-лы, 1 пр.

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным структурам, используемым, в частности, в фотоэлектрических преобразователях.

Известен способ изготовления многопереходной полупроводниковой структуры (RU 2265915), включающий последовательное формирование на полупроводниковой подложке методом эпитаксиального выращивания полупроводниковых слоев n-типа проводимости и p-типа проводимости, образующих совокупность двухслойных компонентов с n-p переходами между слоями. При работе рассматриваемой структуры в составе фотогенератора указанные выше компоненты являются фотопреобразователями, в которых осуществляется преобразование световой энергии в электрическую, и через n-p переходы между слоями компонентов (фоточувствительные переходы) протекает фототок. При этом образующиеся в сформированной указанным выше образом структуре p-n переходы между смежными слоями, расположенными в зонах сопряжения компонентов друг с другом (соединительные переходы), являются барьерами, препятствующими протеканию фототока.

Для устранения барьеров перед присоединением токоотводов на структуру, сформированную указанным выше образом, подают импульсное напряжение и пробивают барьеры (соединительные переходы) с обеспечением последовательной коммутации двухслойных компонентов.

Недостатком рассматриваемого способа является необходимость применения импульсного пробоя соединительных переходов, что влечет за собой возможность неконтролируемого повреждения фоточувствительных переходов.

Известен способ изготовления многопереходной полупроводниковой структуры солнечного элемента (US 20100006136), включающий формирование многослойной полупроводниковой n-p-структуры, образующей совокупность двухслойных компонентов с n-p переходами - фотопреобразователей, сопряженных друг с другом посредством туннельных переходов.

Недостатком рассматриваемого способа является его сложность, обусловленная необходимостью формирования в зонах сопряжения двухслойных компонентов двух сильно легированных дополнительных слоев, образующих туннельные переходы. Кроме того, структура, изготовленная по рассматриваемому способу, не обеспечивает высокой стабильности рабочих характеристик вследствие деградации туннельных переходов.

Известен способ изготовления полупроводниковой структуры с n-p или p-n переходами, предназначенной для использования в солнечном лементе, который описан в RU 2376679. Данный способ выбран авторами в качестве ближайшего аналога.

Рассматриваемый способ включает последовательное формирование на полупроводниковой подложке методом эпитаксиального выращивания слоев n-типа проводимости и p-типа проводимости, образующих не менее двух сопряженных друг с другом двухслойных компонентов с n-p или p-n переходами между слоями.

Двухслойные компоненты сопряжены друг с другом посредством омических контактов в виде напыленного слоя металла, в частности серебра.

Однако в слоях напыленного металла поглощается большая часть светового излучения, что приводит к уменьшению эффективности фотоэлектрического преобразования. Кроме того, сплошной слой металла обуславливает высокую вероятность возникновения дефектов в слоях выращиваемой на нем полупроводниковой структуры, что также снижает эффективность фотоэлектрического преобразования.

Задачей заявляемого изобретения является повышение эффективности фотоэлектрического преобразования.

Сущность заявляемого изобретения заключается в том, что в способе изготовления полупроводниковой структуры, включающем последовательное формирование на полупроводниковой подложке методом эпитаксиального выращивания слоев n-типа проводимости и p-типа проводимости, образующих не менее двух сопряженных друг с другом двухслойных компонентов с n-p или p-n переходами между слоями, согласно изобретению каждые два соседних компонента сопряжены друг с другом посредством введенных в зону сопряжения компонентов микрочастиц из проводящего или полупроводникового материала, размеры которых превышают толщину области пространственного заряда в рассматриваемой зоне сопряжения.

В частном случае выполнения изобретения ширина запрещенной зоны материала микрочастиц больше ширины запрещенной зоны материала ниже лежащих компонентов в направлении от источника света.

Формирование на полупроводниковой подложке методом эпитаксиального выращивания слоев n-типа проводимости и p-типа проводимости, образующих не менее двух сопряженных друг с другом двухслойных компонентов с n-p или p-n переходами (фоточувствительными переходами) между слоями, позволяет создать полупроводниковую многопереходную структуру в ходе единого технологического процесса.

При этом принципиально важным в заявляемом способе является то, что в зонах сопряжения каждых двух соседних двухслойных компонентов друг с другом (в зонах соединительных переходов) вводят микрочастицы из проводящего или полупроводникового материала, размеры которых превышают толщину области пространственного заряда (ОПЗ) в рассматриваемой зоне сопряжения.

Введенные микрочастицы представляют собой проводящие микровключения. При этом за счет того, что их размеры превышают толщину ОПЗ, микрочастицы образуют в указанных областях локальные каналы проводимости, благодаря которым достигается прозрачность барьеров соединительных переходов для носителей электрического заряда и обеспечивается последовательная коммутации двухслойных компонентов.

При этом за счет того, что в зонах сопряжения двухслойных компонентов световое излучение имеет возможность прохождения между микрочастицами, значительно снижаются потери излучения и, как следствие, повышается эффективность фотопреобразования.

Кроме того, введенные в зону сопряжения компонентов микрочастицы обуславливают меньшую вероятность возникновения дефектов в слоях выращиваемой полупроводниковой структуры, чем при формировании в указанной зоне сплошного слоя металла.

Толщину ОПЗ в зонах сопряжения определяют по известным формулам [см., например, кн. С.Зи. Физика полупроводниковых приборов: М., 1984 г.].

В качестве микрочастиц могут быть использованы металлические частицы или микрочастицы, изготовленные из полупроводниковых материалов, например, таких как Si, GaAs, GaP, InP, твердые растворы на основе соединений АIII BV, АIIBVI.

Таким образом, техническим результатом, достигаемым при реализации заявляемого способа, является повышение эффективности фотоэлектрического преобразования.

В случае, когда ширина запрещенной зоны материала микрочастиц больше ширины запрещенной зоны материала нижележащих компонентов в направлении от источника света, обеспечивается уменьшение поглощения микрочастицами светового излучения, падающего на сформированную многопереходную структуру.

Способ осуществляют следующим образом.

На полупроводниковой подложке методом газофазной эпитаксии формируют многослойную полупроводниковую n-p-структуру, образующую совокупность двухслойных компонентов с n-p или p-n фоточувствительными переходами между слоями.

При этом с целью расширения диапазона длин волн преобразуемого в электрическую энергию света обеспечивают возрастание ширины запрещенной зоны компонентов в направлении к источнику падающего на структуру излучения, что достигается варьированием состава материала эпитаксиальных слоев.

На соответствующих стадиях эпитаксиального роста структуры в реактор подают реагенты, являющиеся источником образования микрочастиц из проводящего или полупроводникового материала, и осуществляют формирование в зонах сопряжения компонентов микрочастиц, размеры которых превышают толщину ОПЗ в рассматриваемых зонах. При этом микрочастицы оказываются частично внедренными в материалы двух смежных эпитаксиальных слоев, расположенных в каждой из зон сопряжения. Формирование микрочастиц требуемого размера достигается путем выбора концентрации служащих для их образования реагентов.

Пример осуществления способа

На полупроводниковой подложке из GaSb методом газофазной эпитаксии выращивали многослойную полупроводниковую n-p-структуру, включающую два двухслойных компонента, один из которых содержит слой GaInAsSb n-типа проводимости, слой GaInAsSb p-типа проводимости с n-p фоточувствительным переходом между ними, а другой содержит слой GaSb n-типа проводимости, слой GaSb p-типа проводимости с n-p фоточувствительным переходом между ними. В зоне сопряжения компонентов, а именно в ОПЗ соединительного p-n перехода между слоем GaInAsSb p-типа проводимости с концентрацией акцепторной примеси 4·1017 см-3 и слоем GaSb n-типа проводимости с концентрацией донорной примеси 1,5·1017 см-3, были введены микрочастицы из кристаллического Si. Средний линейный размер микрочастиц составлял около 1,0 мкм, что превышало толщину ОПЗ, составлявшую менее 1,0 мкм.

Как показали испытания изготовленной структуры, введение указанных микрочастиц привело к увеличению прямого тока на прямой ветви ВАХ в p-n соединительном переходе на 3 порядка по сравнению с током в аналогичной структуре без указанных микровключений.

Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
01.03.2019
№219.016.cedd

Способ полирования полупроводниковых материалов

Изобретение относится к области обработки полупроводниковых материалов, а именно к химико-механическим способам полирования полупроводников. Изобретение обеспечивает высокое качество полированной поверхности. Сущность изобретения: в способе химико-механического полирования полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002457574
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.d0c1

Способ определения неоднородностей в полупроводниковом материале

Изобретение относится к области электронной техники и может быть использовано для контроля качества проводящих слоев и поверхностей полупроводниковых пленок, применяемых при изготовлении изделий микроэлектроники. Сущность изобретения: в способе определения неоднородностей в полупроводниковом...
Тип: Изобретение
Номер охранного документа: 0002461091
Дата охранного документа: 10.09.2012
Показаны записи 21-30 из 64.
20.02.2016
№216.014.cf5d

Панель солнечной батареи

Изобретение относится к устройствам энергопитания космического аппарата, предназначенным для преобразования солнечной энергии в электрическую с максимальной эффективностью и удельной мощностью. Панель солнечной батареи содержит верхнюю и нижнюю обшивки и элементы, соединяющие их на требуемом...
Тип: Изобретение
Номер охранного документа: 0002575182
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2ccb

Система позиционирования и слежения за солнцем концентраторной фотоэнергоустановки

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий...
Тип: Изобретение
Номер охранного документа: 0002579169
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.919e

Фотоэлектрический преобразователь

Изобретение относится к электронной технике, а именно к фотоэлектрическим преобразователям солнечной энергии. Фотоэлектрический преобразователь на основе изотипной варизонной гетероструктуры из полупроводниковых соединений A3B5 и/или A2B6 содержит полупроводниковую подложку и изотипный с...
Тип: Изобретение
Номер охранного документа: 0002605839
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a5d3

Способ изготовления фотоэлемента на основе gaas

Способ изготовления фотопреобразователя на основе GaAs включает выращивание методом жидкофазной эпитаксии на подложке n-GaAs базового слоя n-GaAs, легированного оловом или теллуром, толщиной 10-20 мкм и слоя p-AlGaAs, легированного цинком, при х=0,2-0,3 в начале роста и при х=0,10-0,15 в...
Тип: Изобретение
Номер охранного документа: 0002607734
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9ae

Солнечный концентраторный модуль

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8). Теплоотводящие основания (8)...
Тип: Изобретение
Номер охранного документа: 0002611693
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9ce

Система управления платформой концентраторных солнечных модулей

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую...
Тип: Изобретение
Номер охранного документа: 0002611571
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa69

Метаморфный фотопреобразователь

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий...
Тип: Изобретение
Номер охранного документа: 0002611569
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aaa3

Способ изготовления наногетероструктуры со сверхрешеткой

Изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств. Способ изготовления наногетероструктуры со сверхрешеткой включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических...
Тип: Изобретение
Номер охранного документа: 0002611692
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.da8c

Способ получения антимонида галлия с большим удельным электрическим сопротивлением

Изобретение относится к электронной технике, а именно к способам изготовления антимонида галлия с большим удельным электрическим сопротивлением, применяемым в производстве полупроводниковых приборов. В способе изготовления антимонида галлия с большим удельным электрическим сопротивлением,...
Тип: Изобретение
Номер охранного документа: 0002623832
Дата охранного документа: 29.06.2017
+ добавить свой РИД