×
23.02.2019
219.016.c651

Результат интеллектуальной деятельности: НАНОМОДИФИЦИРОВАННЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ НИКЕЛЕВОГО ПОКРЫТИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимического осаждения металлических покрытий, в частности никелевых, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении. Наномодифицированный электролит для электрохимического осаждения никелевого покрытия содержит соли никеля - сернокислый семиводный никель и хлористый шестиводный никель, борсодержащую добавку и воду, при этом он дополнительно содержит углеродный наноматериал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95%, при следующем соотношении компонентов, г/л: сернокислый семиводный никель - 250-400, хлористый шестиводный никель - 50-70, борная кислота 30-40 и наноуглеродный материал - 0,05-0,08. Технический результат - получение беспористых никелевых покрытий с высокой микротвердостью при увеличении скорости осаждения никелевого покрытия. 1 з.п. ф-лы.

Изобретение относится к области электрохимического осаждения металлических покрытий, в частности никелевых, и может быть использовано для получения коррозионностойкого, твердого, термо- и износостойкого покрытия в машиностроении, электронике и других отраслях промышленности.

Известен электролит для электрохимического осаждения многофункциональных покрытий на основе никеля [1], содержащий соли никеля - сернокислый семиводный никель и хлористый шестиводный никель, сахарин, боросодержащую и буферирующие добавки в виде декагидробората натрия и малоновой кислоты, натрий фтористый, формальдегид, паратолуолсульфамид, смачиватель СВ-102 и воду. Такой электролит характеризуется следующим соотношением компонентов, г/л:

Сернокислый семиводный никель - 300-400

Хлористый шестиводный никель - 20-40

Сахарин - 0,5-1,0

Декагидроборат натрия - 0,01-0,5

Малоновая кислота - 25-30

Натрий фтористый - 3,5-4,5

Формальдегид - 0,5-1,2

Паратолуолсульфамид - 1,0-1,5

Смачиватель СВ-102 - 0,01-0,05.

Недостатками такого электролита являются:

- большое количество компонентов, что усложняет приготовление электролита и делает невозможным подкрепление его при его истощении;

- низкая микротвердость получаемого покрытия;

- большая неравномерность получаемого покрытия.

Эти недостатки частично устранены в электролите для электрохимического осаждения сплава никель-бор [2]. Электролит содержит, г/л:

Сернокислый семиводный никель - 280-400

Двухлористый шестиводный никель - 25-60

Борную кислоту - 25-60

1,4 Бутиндиол - 0,2-1,5

Формальдегид - 0,02-1,5

Натриевую соль сахарина - 0,25-2,0

Натрия боргидрид - 0,1-2,0.

Такой состав позволяет расширить рабочий диапазон pH и увеличить скорость осаждения покрытий, уменьшить количество компонентов, однако характеризуется следующими недостатками:

- низкой микротвердостью получаемого покрытия;

- большой неравномерностью получаемого покрытия.

Технический результат изобретения заключается в получении беспористых никелевых покрытий с высокой микротвердостью при увеличении скорости осаждения никелевого покрытия.

Технический результат достигается тем, что наномодифицированный электролит для электрохимического осаждения никелевого покрытия, содержащий соли никеля - сернокислый семиводный никель и хлористый шестиводный никель, борсодержащую добавку и воду, согласно изобретению, дополнительно содержит углеродный наноматериал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95%, при следующем соотношении компонентов, г/л:

Сернокислый семиводный никель - 250-400

Хлористый шестиводный никель - 50-70

Борная кислота 30-40

Наноуглеродный материал - 0,05-0,08.

Наномодифицированный электролит может содержать наноуглеродный материал, введенный в состав электролита без очистки от никелевого катализатора, используемого для его синтеза, в количестве 0,05-0,08 г/л.

Такой электролит характеризуется меньшим количеством используемых компонентов, а при использовании углеродного наноматериала без очистки от никелевого катализатора меньшими денежными затратами, так как не требуется обработка наноматериала азотной кислотой для удаления катализатора.

Электролит готовят следующим образом.

Предварительно соли никеля растворяют раздельно в дистиллированной воде при температуре 40-60°С. Борную кислоту растворяют также раздельно в дистиллированной воде при температуре 75-80°С.

Все растворы смешивают и отстаивают в течение 7 суток. Подготовленный раствор декантируют в промежуточную емкость. Из промежуточной емкости раствор фильтруют под вакуумом через фильтровальную бумагу. Для удаления органических соединений в нагретый до 30°С электролит добавляют 10 г/л 6%-ной перекиси водорода. Электролит интенсивно перемешивают 10 минут. При той же температуре и интенсивном перемешивании в электролит добавляют 3 г/л активированного угля. Электролит отстаивают 12 часов, затем декантируют и фильтруют под вакуумом через фильтровальную бумагу. После этого в раствор электролита добавляют наноуглеродный материал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95%, и электролит обрабатывают на ультразвуковой установке с частотой 22 кГц для уменьшения размеров агломератов из наноуглеродных трубок и их более равномерного распределения в электролите. В качестве углеродного материала предпочтительно применение углеродного наноматериала «Таунит», производитель углеродного наноматериала ООО «НаноТехЦентр», Россия, г.Тамбов.

Подготовку поверхности деталей перед нанесением гальванического покрытия проводят стандартными способами с использованием известных растворов.

Осаждение проводят при pH 3,0-5,0, плотности тока 1,0-4,0 А/дм2 и температуре 45-60°С.

Пример 1

Электрохимическое осаждение покрытия на предварительно подготовленную поверхность основы из материала сталь Ст3 проводят в электролите, содержащем (в г/л):

Сернокислый семиводный никель - 254,6

Хлористый шестиводный никель - 67,5

Борная кислота 32,33

Наноуглеродный материал - 0,065.

Осаждение проводят при pH 3,5, плотности тока 4 А/дм2 и температуре 52°С.

В течение 50 мин получают покрытие средней толщиной 16 мкм.

Полученное покрытие беспористо и достаточно равномерно распределено по поверхности детали. Микротвердость, измеренная на микротвердомере ПМТ-3, составляет 1123 кг/мм2. Характеристики получаемого покрытия - микротвердость и пористость - соответствуют характеристикам хромовых покрытий, а равномерность полученного покрытия значительно превосходит хромовые. Это позволяет использовать предложенный электролит в машиностроении взамен электролита хромирования, который является более дорогим, высокотоксичным и имеет низкие рассеивающую способность и выход по току.

Пример 2

Электрохимическое осаждение покрытия на предварительно подготовленную поверхность основы из материала сталь Ст3 проводят в электролите, содержащем (в г/л):

Сернокислый семиводный никель - 254,6

Хлористый шестиводный никель - 67,5

Борная кислота 32,33

Наноуглеродный материал «Таунит» со следующими характеристиками:

количество графеновых слоев - не более 30,

диаметр волокон - от 15 до 40 нм,

длина - не менее 2 мкм,

количеством структурированного углерода не менее 95%,

неочищенный от никелевого катализатора - 0,07.

Осаждение проводят при pH 3,5, плотности тока 4 А/дм2 и температуре 52°С.

В течение 50 мин получают покрытие средней толщиной 43 мкм.

Полученное покрытие беспористо и достаточно равномерно распределено по поверхности детали. Микротвердость, измеренная на микротвердомере ПМТ-3, составляет 1009 кг/мм2. Характеристики получаемого покрытия - микротвердость и пористость - соответствуют характеристикам хромовых покрытий, а равномерность полученного покрытия значительно превосходит хромовые. Это позволяет использовать предложенный электролит в машиностроении взамен электролита хромирования, который является более дорогим, высокотоксичным и имеет низкие рассеивающую способность и выход по току. Кроме того, использование нано-углеродного материала «Таунит», неочищенного от никелевого катализатора, приводит к существенному (в 2,6 раза) увеличению скорости осаждения покрытия, в результате чего повышается производительность гальванооборудования.

Литература

1. Патент РФ №2149927, МПК C25D 3/56, 2000 г.

2. Патент РФ №2265086, МПК C25D 3/56, 2005 г.

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
23.02.2019
№219.016.c650

Способ получения наномодифицированного гальванического никелевого покрытия

Изобретение относится к гальванотехнике, в частности к электрохимическому осаждению никелевых покрытий, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002411309
Дата охранного документа: 10.02.2011
Показаны записи 1-10 из 84.
20.02.2013
№216.012.26c5

Способ получения объемного наноструктурированного материала

Изобретение относится к нанотехнологии. Сущность изобретения: в способе получения объемного наноструктурированного материала на подложке электроосаждением металла из электролита на подложку из электропроводного материала, индифферентного по отношению к осаждаемому металлу, на катоде образуют...
Тип: Изобретение
Номер охранного документа: 0002475445
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27da

Способ идентификации материала в насыпном виде и устройство для его осуществления

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений...
Тип: Изобретение
Номер охранного документа: 0002475722
Дата охранного документа: 20.02.2013
27.09.2013
№216.012.6f48

Многофункциональная добавка к автомобильному бензину и содержащая ее топливная композиция

Изобретение относится к многофункциональной добавке к автомобильному бензину, содержащей антидетонационные и другие компоненты, а также модифицирующую добавку. В качестве модифицирующей добавки используются углеродные наноматериалы (УНМ), предпочтительно в виде многослойных нанотрубок (УНТ) в...
Тип: Изобретение
Номер охранного документа: 0002494139
Дата охранного документа: 27.09.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
10.06.2014
№216.012.cf9d

Электротеплоаккумулирующий нагреватель

Изобретение относится к энергетике и может быть использовано для отопления и терморегулирования. Изобретение позволит снизить энергетические потери и повысить эффективность регулирования мощности нагрева. Электротеплоаккумулирующий нагреватель содержит корпус, теплоаккумулирующее вещество и...
Тип: Изобретение
Номер охранного документа: 0002518920
Дата охранного документа: 10.06.2014
27.09.2014
№216.012.f794

Способ функционализации углеродных наноматериалов

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в...
Тип: Изобретение
Номер охранного документа: 0002529217
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ff23

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну...
Тип: Изобретение
Номер охранного документа: 0002531171
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3c2f

Устройство для позиционного регулирования и снижения давления на грунт системы управления - управляемого моста колесного зерноуборочного комбайна

Изобретение относится к сельскохозяйственному машиностроению. Устройство для позиционного регулирования и снижения давления на грунт системы управления - управляемого моста колесного зерноуборочного комбайна - установлено на кронштейнах на балке управляемого моста и корпусе комбайна. Устройство...
Тип: Изобретение
Номер охранного документа: 0002546895
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3dbe

Регулятор сцепного веса полурамного трактора

Изобретение относится к сельскохозяйственному транспорту. Регулятор сцепного веса полурамного трактора содержит гидроцилиндр, шарнир, кронштейн. Устройство выполнено в виде механизма, устанавливаемого на косыночном упоре в тыльной части передней полурамы трактора. Механизм состоит из силового...
Тип: Изобретение
Номер охранного документа: 0002547294
Дата охранного документа: 10.04.2015
+ добавить свой РИД