×
23.02.2019
219.016.c650

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОМОДИФИЦИРОВАННОГО ГАЛЬВАНИЧЕСКОГО НИКЕЛЕВОГО ПОКРЫТИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к гальванотехнике, в частности к электрохимическому осаждению никелевых покрытий, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении. Способ получения наномодифицированного гальванического никелевого покрытия включает гальваническое осаждение никелевого покрытия, при этом в электролит вводят наноуглеродный материал с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95%, в количестве 0,05-0,08 г/л, после чего электролит обрабатывают ультразвуком. Наноуглеродный материал может вводиться в электролит неочищенным от никелевого катализатора. Рекомендуемый режим обработки ультразвуком: частота 22 кГц, амплитуда 80 мкм, интенсивность звука 786 Вт/см. Технический результат - достижение микротвердости никелевого покрытия, превосходящей микротвердости хромирования. 2 з.п. ф-лы, 1 табл.

Изобретение относится к гальванотехнике, в частности к электрохимическому осаждению никелевых покрытий, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, и износостойкого, а также защитно-декоративного покрытия в машиностроении.

Известен способ получения многофункционального покрытия никель-бор (см., например, патент РФ №2284379, МПК C25D 3/56, 2006 г.), включающий электрохимическое осаждение покрытия при плотности тока 0,5-5,0 А/дм2, температуре 30-69°С из электролита при рН 2,5-5,5, содержащего 250-400 г/л никеля сернокислого семиводного, 20-60 г/л никеля двухлористого шестиводного, 30-60 г/л борной кислоты, 0,01-2,0 блескообразующих добавок, при этом перед электрохимическим осаждением покрытия в электролит вводят борирующую добавку, принадлежащую к классу неорганических или органических бороводородов и их солей.

Такой способ обеспечивает получение больших толщин покрытия с сохранением заданных свойств по всей его толщине, однако при этом обладает недостаточной микротвердостью, типичной для никелевого покрытия.

Этот недостаток устранен в принятом за прототип способе получения композиционных металлоалмазных покрытий (см. патент РФ №2156838, МПК C25D 15/00, 2000 г.), согласно которому в электролит вводят очищенный ультрадисперсный алмазный порошок в количестве 2-20 г/л в виде электролитной суспензии с концентрацией ультрадисперсного алмазного порошка 8-10% с содержанием примесей не более 2% и удельной поверхностью 400-500 м2/г.

Недостатками этого способа являются:

- высокая себестоимость электролита хромирования;

- большие затраты на электроэнергию вследствие низкого выхода хрома по току;

- высокая токсичность хромовых электролитов;

- низкая рассеивающая способность хромовых электролитов, что не позволяет наносить хромовые покрытия на детали сложной формы.

Задачами, на решение которых направлено предлагаемое изобретение, являются:

1. снижение себестоимости наномодифицированных гальванических покрытий,

2. получение никелевых покрытий с высокой микротвердостью,

3. получение беспористых никелевых покрытий,

4. увеличение скорости осаждения никелевого покрытия.

Технический результат заключается в достижении микротвердости никелевого покрытия, превосходящей микротвердость хромирования, что позволит заменять хромирование никелированием.

Указанный технический результат достигается тем, что согласно способу получения наномодифицированного гальванического никелевого покрытия, включающему гальваническое осаждение никелевого покрытия, в электролит вводят наноуглеродный материал с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95%, в количестве 0,05-0,08 г/л, после чего электролит обрабатывают ультразвуком.

Наноуглеродный материал вводят в электролит неочищенным от никелевого катализатора.

Обработку электролита ультразвуком проводят с частотой 22 кГц, амплитудой 80 мкм и интенсивностью звука 786 Вт/см2.

Введение в электролит наноуглеродного материала с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95%, в количестве 0,05-0,08 г/л с последующей обработкой электролита ультразвуком обеспечивает повышение достижения микротвердости покрытия, не уступающего описанному в прототипе металлоалмазному покрытию, но при этом за счет введения наноматериала в гораздо меньшем количестве, чем алмазного порошка, достигается снижение себестоимости покрытия. Увеличение микротвердости покрытия происходит за счет совершенствования структуры никелевого покрытия в результате воздействия на него наноуглеродных трубок в процессе осаждения. Одновременно увеличивается скорость осаждения и исключается пористость покрытия. Обработка электролита ультразвуком обеспечивает уменьшение размеров агломератов из углеродных наноматериалов и их более равномерное распределение в электролите.

Введение наноуглеродного материала в электролит неочищенным от никелевого катализатора обеспечивает дополнительное снижение затрат на нанесение гальванических покрытий. В настоящее время описанный выше наноуглеродный материал получают методом каталитического пиролиза, причем в качестве катализатора в основном используются катализаторы на основе оксида никеля. После проведения синтеза наноуглеродного материала его очищают от катализатора промывкой в азотной кислоте, после чего материал промывают и сушат. Увеличение скорости осаждения происходит вследствие участия в процессе никелевого катализатора, находящегося на концах наноуглеродных трубок. Поскольку микропримеси никельсодержащего материала не могут отрицательно влиять на процесс осаждения никелевого покрытия, в настоящем изобретении предусмотрено применение полупродукта - неочищенного от катализатора углеродного наноматериала, что позволяет снизить затраты на модификатор не менее чем на 5%.

Проведение обработки электролита ультразвуком с частотой 22 кГц амплитудой 80 мкм, интенсивностью звука 786 Вт/см2 обеспечивает не только разрушение агломератов в растворе, но и обеспечивает равномерность распределения наноматериала в растворе, что обеспечивает получение беспористого покрытия.

Подготовку поверхности деталей перед нанесением гальванического покрытия проводят стандартными способами с использованием известных растворов.

Для пояснения изобретения описан пример осуществления способа.

Пример.

Электрохимическое осаждение покрытия на предварительно подготовленную поверхность основы из материала сталь Ст3 проводят в электролите, содержащем (в г/л):

Сернокислый семиводный никель 254,6

Хлористый шестиводный никель 67,5

Борную кислоту 32,33

В качестве углеродного наноматериала использовали углеродный наноматериал «Таунит», изготовитель ООО «НаноТехЦентр» г.Тамбов, неочищенный от никелевого катализатора в количестве 0,07 г/л со следующими характеристиками:

Характеристика Значение
Наружный диаметр, нм 15-40
Внутренний диаметр, нм 3-8
Длина, µм 2 и более
Общий объем примесей (%), аморфного углерода 0,3-0,5
Насыпная плотность, г/см3 0,4-0,5

После введения в раствор электролита наноуглеродного материала «Таунит» электролит обрабатывают на ультразвуковой установке с частотой 22 кГц, интенсивность ультразвуковой обработки: амплитуда 80 мкм, интенсивность звука 786 Вт/см2.

Процесс проводят при рН 3,5, плотности тока 4 А/дм2 и температуре 52°С.

В течение 50 мин получают покрытие средней толщиной 43 мкм.

Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузке 50 г.

Пористость покрытия исследовалась по ГОСТ 9.302-88.

Полученное покрытие беспористо и достаточно равномерно распределено по поверхности детали.

Микротвердость составляет 1009 кг/мм2, тогда как наилучшее значение этого показателя для хром-алмазных покрытий, заявленных в прототипе, составляет 930 кг/мм2. Кроме того, наилучшие показатели хром-алмазных покрытий получены при концентрации в электролите ультрадисперсного алмазного порошка 22 г/л, в то время как наилучшие результаты с добавлением наноуглеродного материала «Таунит» получены при его концентрации в электролите 0,07 г/л, т.е. меньшей в 300 раз. При соизмеримой себестоимости ультрадисперсного алмазного порошка и наноуглеродного материала «Таунит» в предлагаемом способе достигается существенное снижение себестоимости наномодифицированных гальванических покрытий.

Характеристики получаемого покрытия - микротвердость и пористость - соответствуют характеристикам хромовых покрытий, а равномерность полученного покрытия значительно превосходит хромовые. Это позволяет использовать предложенный способ в машиностроении взамен процесса хромирования, который является более дорогим, высокотоксичным и имеет низкие рассеивающую способность и выход по току.

Кроме того, использование наноуглеродного материала «Таунит», неочищенного от никелевого катализатора, приводит к существенному (в 2,6 раза по сравнению с традиционным электролитом Уоттса) увеличению скорости осаждения покрытия, в результате чего повышается производительность гальванооборудования.

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
23.02.2019
№219.016.c651

Наномодифицированный электролит для электрохимического осаждения никелевого покрытия

Изобретение относится к области электрохимического осаждения металлических покрытий, в частности никелевых, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении. Наномодифицированный...
Тип: Изобретение
Номер охранного документа: 0002411308
Дата охранного документа: 10.02.2011
Показаны записи 71-80 из 84.
27.06.2019
№219.017.98d5

Способ диспергирования углеродных нанотрубок ультразвуком

Изобретение относится к диспергированию углеродных нанотрубок (УНТ) и может быть использовано для получения стабильных дисперсий, содержащих углеродные наноматериалы, диспергированные в органических растворителях. Способ включает введение в жидкую среду нанотрубок в виде порошка и воздействие...
Тип: Изобретение
Номер охранного документа: 0002692541
Дата охранного документа: 25.06.2019
06.07.2019
№219.017.a6f5

Способ получения графенового материала

Изобретение относится к нанотехнологии и химической промышленности и может быть использовано при изготовлении полимерных композиционных материалов. Сначала графит обрабатывают раствором персульфата аммония в серной кислоте, не содержащей свободной воды. Интеркалированный графит...
Тип: Изобретение
Номер охранного документа: 0002693755
Дата охранного документа: 04.07.2019
01.09.2019
№219.017.c4f4

Способ получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди

Изобретение относится к способу получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди и может найти применение главным образом в области нанобиотехнологий и наномедицины для изготовления препаратов, подавляющих жизнедеятельность...
Тип: Изобретение
Номер охранного документа: 0002698713
Дата охранного документа: 29.08.2019
10.09.2019
№219.017.c9cc

Устройство наружной установки для плавки гололеда

Использование: в области электроэнергетики для плавки льда на проводах и тросах воздушных линий электропередачи постоянным током. Технический результат заключается в обеспечении возможности эксплуатации устройства на открытой площадке в климатических условиях У1 по ГОСТ 15150. Достижение...
Тип: Изобретение
Номер охранного документа: 0002699667
Дата охранного документа: 09.09.2019
21.12.2019
№219.017.efc5

Способ получения оксида графена

Изобретение относится к химической промышленности и нанотехнологии. Сначала графит обрабатывают раствором перекиси водорода в серной кислоте, причем количество перекиси водорода берут от 0,15 до 0,30 масс.ч. на 1 масс.ч. графита в пересчете на 100%-ную перекись водорода при общей концентрации...
Тип: Изобретение
Номер охранного документа: 0002709594
Дата охранного документа: 18.12.2019
22.01.2020
№220.017.f897

Способ получения графена, растворимого в неполярных растворителях

Изобретение может быть использовано при изготовлении присадок в масла и смазочные материалы.Берут модифицирующие агенты для оксида графена - органические производные амина с жирными группами в количестве от 1 до 20 мас.ч. на 1 мас.ч. графенового углерода. В качестве указанных модифицирующих...
Тип: Изобретение
Номер охранного документа: 0002711490
Дата охранного документа: 17.01.2020
05.03.2020
№220.018.0934

Способ для определения границ рабочего диапазона классических систем фазовой автоподстройки и устройство для его реализации

Изобретение относится к области электротехники, в частности к радиоэлектронике и компьютерным архитектурам, может использоваться в приемо-передающих устройствах и технике связи и управления, радиоавтоматике, системах авторегулирования, в частности, при проектировании различных типов систем...
Тип: Изобретение
Номер охранного документа: 0002715799
Дата охранного документа: 03.03.2020
14.05.2020
№220.018.1c24

Способ получения графеносодержащих суспензий и устройство для его реализации

Изобретение может быть использовано при получении модифицированных пластичных смазок, эпоксидных смол, бетонов. Сначала готовят смесь кристаллического графита с жидкостью и подают её в устройство для получения графенсодержащей суспензии сдвиговой эксфолиацией частиц графита поле центробежных...
Тип: Изобретение
Номер охранного документа: 0002720684
Дата охранного документа: 12.05.2020
07.07.2020
№220.018.304b

Способ получения нанокомпозиционного сорбционного материала на основе графена и наночастиц оксида железа

Изобретение относится к области химической технологии, в частности к получению нанокомпозиционного сорбционного материала на основе графена. Материалы могут быть использованы в качестве сорбентов, носителей катализаторов, электродных материалов, в сенсорах. Согласно изобретению смешивают оксид...
Тип: Изобретение
Номер охранного документа: 0002725822
Дата охранного документа: 06.07.2020
24.07.2020
№220.018.364c

Навесное разрыхляющее-разуплотняющее устройство для колесного трактора

Изобретение относится к сельскому хозяйству. Навесное разрыхляющее-разуплотняюшее устройство для колесного трактора содержит металлическую опорную раму квадратного сечения, смонтированную при помощи реактивных тяг в установочных кронштейнах на корпусе колесного трактора. Внутри рамы установлен...
Тип: Изобретение
Номер охранного документа: 0002727262
Дата охранного документа: 21.07.2020
+ добавить свой РИД