×
21.02.2019
219.016.c56d

Результат интеллектуальной деятельности: Способ фотодинамической терапии злокачественных новообразований в эксперименте

Вид РИД

Изобретение

Аннотация: Изобретение относится к экспериментальной медицине и онкологии и может быть использовано для фотодинамической терапии злокачественных новообразований в эксперименте. Для этого осуществляют внутрибрюшинное введение озонированного физиологического раствора и проводят два сеанса фотодинамической терапии. Перед первым сеансом ФДТ проводят 3 процедуры внутрибрюшинного введения озонированного физиологического раствора (ОФР) с концентрацией озона в озоно-кислородной смеси 400 мкг/л из расчета 0,5 мл ОФР на животное массой 200±25 г. Интервал между процедурами введения ОФР составляет 48 часов. Через 20 часов после последней процедуры внутрибрюшного введения ОФР осуществляют введение в три точки злокачественного новообразования 0,3% раствора фотосенсибилизатора (ФС), в частности на основе сульфинированного фталоцианина гидроксиалюминия, из расчета 0,3 мл/см новообразования. Через 6-12 часов после введения ФС каждую из точек облучают в течение 10 минут светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см и плотностью энергии 60 Дж/см. Затем через 24 часа после первого сеанса ФДТ проводят 2 процедуры внутрибрюшинного введения ОФР с концентрацией озона в озоно-кислородной смеси 500 мкг/л из расчета 0,5 мл на животное массой 200±25 г, с интервалом между введением ОФР - 24 часа. Перед вторым сеансом ФДТ после 2-й процедуры введения ОФР через 48 часов в опухоль вводят 0,3% раствор ФС в три точки злокачественного новообразования из расчета 0,3 мл/см новообразования. Через 6-12 часов после введения ФС каждую из точек в течение 10 минут облучают светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см и плотностью энергии 60 Дж/см. Через 24 часа после второго сеанса ФДТ проводят 3 процедуры внутрибрюшинного введения 0,5 мл ОФР с концентрацией озона в озоно-кислородной смеси 200 мкг/л, с интервалом между процедурами введения ОФР 24 часа. Способ обеспечивает повышение эффективности ФДТ за счёт оптимизации выбора концентрации озона и режима ведения ОФР после сеансов ФДТ. 1 табл., 3 пр.

Предлагаемый способ относится к экспериментальной медицине в области онкологии, а именно к фотодинамической терапии (ФДТ) местнораспространенных онкологических заболеваний, и на сегодняшнем этапе изучения проблемы может быть практически использован для лечения животных.

Фотодинамическая терапия, заключающаяся в местном или системном введении фотосенсибилизатора (ФС) с последующим облучением пораженного участка неионизирующим излучением определенной длины волны, вызывает окислительное фотоповреждение и последующую гибель клеток-мишеней (1)

ФДТ активно применяется при лечении новообразований, особенно наружной локализации, и является перспективным направлением в практической онкологии.

Преимущества ФДТ заключаются в возможности избирательного поражения опухолевой ткани, отсутствии серьезных осложнений, которые могут возникнуть при хирургическом вмешательстве и применении других методов лечения, традиционно используемых в онкологии, хорошем косметическом эффекте, а также возможности сочетания флуоресцентной диагностики и лечебного воздействия. Существование таких побочных эффектов как кожная фототоксичность и болевой эффект, который возникает при лазерном воздействии, ограничивают повышение терапевтической эффективности за счет увеличения доз ФС и/или интенсивности лазерного облучения. В связи с этим актуальным является поиск других подходов в повышении лечебного действия этого метода. Одним из таких подходов является сочетание с терапией, направленной на усиление одного из предполагаемых механизмов действия ФДТ.

При этом считают, что основной механизм, определяющий цитотоксическое действие, связан с образованием активных форм кислорода (АФК) (2) Озонотерапия, как дополнительный источник АФК, является наиболее физиологическим, эффективным, доступным и подходящим для данной цели методом, обладающим и собственным противоопухолевым действием (3). Так известен способ предоперационной фотодинамической терапии, включающий введение фотосенсибилизатора и облучение низкоэнергетическим лазером бронхиального дерева, при этом раствор ФС непосредственно перед облучением озонируют (4). Однако в известном способе не учитывается возможное окисление фотосенсибилизатора и связанное с этим изменение его свойств в виду того, что озон - один из самых сильных окислителей (5) Известен способ озоно-фотодинамической терапии злокачественных новообразований, включающий введение фотосенсибилизатора (ФС), облучение лазером опухоли, при этом предварительно осуществляют введение озонированного раствора, при этом доза озона для системного применения составляет от 0,8 до 25 мкг/кг, а доза озона для местного использования от 8 до 50 мкг/кг (6).

Однако в данном способе не учитывается возможность использования озона как интоксикационного средства в отношении веществ, которые образуются в результате некротических процессов опухоли после фотодинамической терапии.

Наиболее близким к предлагаемому способу по совокупности существенных признаков и достигаемому техническому результату является способ лечения опухолей на основе фотодинамической терапии с использованием озонированного физиологического раствора, который выбран авторами в качестве прототипа (7).

Способ включает проведение двух сеансов фотодинамической терапии (ФДТ) с интервалом в 3 суток, при ФДТ интратуморально вводят фотосенсибилизатор - 03% раствор препарата на основе сульфинированного фталоцианина гидроксиалюминия («Фотосенс») и в течение 6-12 часов после введения осуществляют десятиминутное воздействие светодиодным лазером с длиной волны λ=660±10 нм, плотностью мощности излучения Р=100 мВт/см2, при этом перед проведением первого сеанса фотодинамического воздействия осуществляют 3 процедуры внутрибрюшинной инъекции 0,5 мл озонированного физиологического раствора с концентрацией озона в озоно-кислородной смеси 400 мкг/л через день, перед вторым сеансом фотодинамического воздействия - 2 процедуры введения ОФР с такой же концентрацией через день.

Данный способ фотодинамической терапии обладает противоопухолевым действием.

Однако данный способ недостаточно эффективен, за счет слабого детоксикационного действия в отношении эндогенных токсинов, образующихся после разрушения неоплазии в результате терапии, что снижает и замедляет репаративные процессы в организме. Задачей предлагаемого изобретения является разработка эффективного способа фотодинамической терапии злокачественных новообразований в эксперименте.

Поставленная задача решается предлагаемым способом фотодинамической терапии злокачественных новообразований в эксперименте, включающем два сеанса фотодинамической терапии, для этого предварительно перед первым сеансом ФДТ проводят 3 процедуры внутрибрюшинного введения озонированного физиологического раствора (ОФР) с концентрацией озона в озоно-кислородной смеси 400 мкг/л из расчета 0,5 мл ОФР на животное массой 200±25 г, с интервалом между введением ОФР - 48 часов, через 20 часов после последней процедуры внутрибрюшного введения ОФР осуществляют введение в несколько точек злокачественного новообразования 0,3% раствора фотосенсибилизатора (ФС), в частности препарата на основе сульфинированного фталоцианина гидроксиалюминия, из расчета 0,3 мл/см3 новообразования, через 6-12 часов после введения ФС каждую из точек облучают в течение 10 минут светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см2 и плотностью энергии 60 Дж/см2, затем через 24 часа после первого сеанса ФДТ проводят 2 процедуры внутрибрюшинного введения по 0,5 мл ОФР перед вторым сеансом ФДТ, после 2-ого введения ОФР в опухоль вводят 0,3% раствор ФС в несколько точек злокачественного новообразования из расчета 0,3 мл/см3 новообразования, через 6-12 часов после введения ФС каждую из точек в течение 10 минут облучают светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см2 и плотностью энергии 60 Дж/см2, СОГЛАСНО ИЗОБРЕТЕНИЯ, после первого сеанса ФДТ проведение 2-х процедур внутрибрюшинного введения 0,5 мл ОФР осуществляют с концентрацией озона в озоно-кислородной смеси 500 мкг/л и с интервалом между введением ОФР 24 часа, а проведение второго сеанса ФДТ осуществляют через 48 часов после проведения 2-ой процедуры внутрибрюшинного введения ОФР, и дополнительно через 24 часа после второго сеанса ФДТ проводят 3 процедуры внутрибрюшинного введения 0,5 мл ОФР с концентрацией озона в озоно-кислородной смеси 200 мкг/л с интервалом между процедурами ОФР 24 часа.

Предпочтительно, что введение раствора ФС осуществляют в три точки злокачественного новообразования.

Техническим результатом предлагаемого способа является повышение эффективности фотодинамической терапии злокачественных новообразований в эксперименте.

Данный технический результат достигается тем, что после первого сеанса ФДТ проведение 2-х процедур внутрибрюшинного введения 0,5 мл ОФР осуществляют с концентрацией озона в озоно-кислородной смеси 500 мкг/л и с интервалом между введением ОФР 24 часа, а проведение второго сеанса ФДТ осуществляют через 48 часов после проведения 2-ой процедуры внутрибрюшинного введения ОФР, и дополнительно через 24 часа после второго сеанса ФДТ проводят 3 процедуры внутрибрюшинного введения 0,5 мл ОФР с концентрацией озона в озоно-кислородной смеси 200 мкг/л с интервалом между процедурами ОФР 24 часа.

Предпочтительно, что введение раствора ФС осуществляют в три точки злокачественного новообразования.

Такой технический результат обусловлен оптимизацией выбора концентрации озона и режима введения ОФР после сеансов ФДТ. Использование озона после первого сеанса ФДТ в более высокой концентрации (500 мкг/л), по сравнению со способом-прототипом, обосновано более выраженным деструктивным эффектом на опухолевые клетки с отсутствием риска создания канцерофильных условий для нормальных тканей (8).

Уменьшение интервала после первого сеанса ФДТ между 2-мя процедурами введениями ОФР до 24 часов обусловлено временем жизни биологически активных соединений, образующихся в результате взаимодействия озона с внутренней средой организма. Необходимость использования дополнительного после второго сеанса ФДТ проведения 3 процедур внутрибрюшинного введения ОФР с концентрацией озона в озоно-кислородной смеси 200 мкг/л обусловлено тем, что воздействие ОФР низких концентраций останавливает дезорганизацию метаболизма, вызванную развитием, ростом и разрушением в результате терапии злокачественного новообразования, за счет снижения уровня эндогенной интоксикации.

Предлагаемый способ осуществляют следующим образом

Животному со злокачественным новообразованием, проводят два сеанса фотодинамической терапии (ФДТ), для этого предварительно перед первым сеансом ФДТ проводят 3 процедуры внутрибрюшинного

введения озонированного физиологического раствора (ОФР) с концентрацией озона в озоно-кислородной смеси 400 мкг/л из расчета 0,5 мл ОФР на животное массой 200±25 г, с интервалом между введением ОФР - 48 часов, через 20 часов после последней процедуры внутрибрюшного введения ОФР осуществляют введение в несколько точек злокачественного новообразования, предпочтительно в 3 точки, 0,3% раствора фотосенсибилизатора (ФС), в частности фотосенсибилизатор на основе сульфинированного фталоцианина гидроксиалюминия, из расчета 0,3 мл/см3 новообразования, через 6-12 часов после введения ФС каждую из точек облучают в течение 10 минут светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см2 и плотностью энергии 60 Дж/см2, затем через 24 часа после первого сеанса ФДТ проводят 2 процедуры внутрибрюшинного введения по 0,5 мл ОФР с концентрацией озона в озоно-кислородной смеси 500 мкг/л перед вторым сеансом ФДТ, и с интервалом между введением ОФР 24 часа, проведение второго сеанса ФДТ осуществляют через 48 часов после проведения 2-ой процедуры внутрибрюшинного введения ОФР, для этого в опухоль вводят 0,3% раствор ФС предпочтительно в 3 точки злокачественного новообразования из расчета 0,3 мл/см3 новообразования, через 6-12 часов после введения ФС каждую из точек введения в течение 10 минут облучают светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см2 и плотностью энергии 60 Дж/см2, через 24 часа после второго сеанса ФДТ проводят 3 процедуры внутрибрюшинного введения 0,5 мл ОФР с концентрацией озона в озоно-кислородной смеси 200 мкг/л с интервалом между процедурами ОФР 24 часа.

Предлагаемым способом была осуществлена фотодинамическая терапия злокачественного новообразования группе из 6-ти лабораторных животных (белым нелинейным крысам-самцам) в возрасте 2 месяцев с начальной массой 200±25 г.

Кроме того, по прототипу была осуществлена фотодинамическая терапия злокачественного новообразования группе из 5-ти лабораторных животных (белым нелинейным крысам-самцам) в возрасте 2 месяцев с начальной массой 200±25 г.

Также в качестве контроля была использована группа из 6-ти лабораторных животных (белые нелинейные крысы-самцы) в возрасте 2 месяцев с начальной массой 200±25 г, которым фотодинамическая терапия злокачественного новообразования не проводилась.

Для постановки эксперимента была использована модель неоплазии, создаваемая путем перевивки опухолевого штамма - карцинома почки (РА). Штамм перевиваемых опухолей был получен из банка опухолевых штаммов РОНЦ им. Н.Н. Блохина РАМН. Опухоли перевивали лабораторным животным по стандартным методикам (9) Штаммы пассировались на крысах в возрасте 2,5 месяца. Опухоль РА брали на 9 сутки развития.

Трансплантация опухолевых клеток крысам проводилась подкожно в область левого бедра по 0,5 мл опухолевой взвеси в растворе Хенкса в разведении 1:3.

Эффект после проведения ФДТ злокачественных новообразований по прототипу оценивали на 20-е сутки после трансплантации опухолевых клеток, а по предлагаемому способу на 23-е сутки, по коэффициенту абсолютного прироста опухоли (К) и проценту торможения роста опухоли (ТРО %).

Коэффициент абсолютного прироста опухоли для каждого животного рассчитывали по формуле:

где: V0 - объем опухоли до воздействия;

Vt - объем опухоли на срок наблюдения.

При К>0 - оценивали как продолженный рост опухоли, при -1<К<0 - торможение роста опухоли, К=-1 - полная регрессия опухоли. Заключение о полной регрессии неоплазии делали при отсутствии видимого и пальпируемого очага.

Для расчета объема опухоли использовали формулу:

где: d1 d2 - два взаимно перпендикулярных поперечных сечения опухоли (10).

Торможение роста опухоли (ТРО) вычисляли по формуле для каждой экспериментальной группы:

где: Vk - средний объем опухоли в контрольной группе на определенный срок измерения;

Vо - средний объем опухоли в опытной группе на определенный срок измерения.

В качестве положительного эффекта учитывается торможение роста опухоли более 50% (11)

Результаты проведенной фотодинамической терапии злокачественного новообразования группам лабораторных животных по прототипу и по предлагаемому способу приведены в таблице.

*р=0,045 - U-критерий Манна-Уитни по сравнению с группой «Контроль»;

**р=0,004 - U-критерий Манна-Уитни по сравнению с группой «Контроль»

Поскольку полученные данные коэффициента прироста новообразования и его объем не подчиняются нормальному распределению, для их описания использовали медиану (Me) и интерпроцентильный размах (Me [25%; 75%]), а обработку осуществляли с использованием методов непараметрической статистики. При статистической обработке результатов эксперимента использовали U-критерий Манна-Уитни. Данные обрабатывали с помощью программы STATISTICA 8.

Анализ полученных результатов показал, что фотодинамическая терапия злокачественного новообразования по прототипу лишь затормозила рост карциномы почки РА. Медиана коэффициента прироста опухоли в этой опытной группе составила 0,42, что указывает на замедление темпов роста злокачественного новообразования).

При этом фотодинамическая терапия предлагаемым способом привела почти к полной деградации опухолевых узлов во всех случаях. Медиана коэффициента прироста опухоли в этой опытной группе составила -0,46. Что говорит о подавлении развития злокачественного новообразования. При сравнении эффективности фотодинамической терапии по проценту ТРО получили, что предлагаемый способ фотодинамической терапии эффективнее на 10% по сравнению с прототипом.

Примеры конкретного использования предлагаемого способа Пример 1.

Крысе №61, самцу весом 180 г в возрасте 2 месяцев ввели подкожно в область левого бедра инокулюм опухолевого штамма РА в растворе Хенкса (1:3) объемом 0,5 мл.

На десятые сутки развития злокачественного новообразования при размере опухоли d1=2 d2=1 см, животному была проведена фото динамическая терапия предлагаемым способом.

Животному были проведены два сеанса фотодинамической терапии, для этого предварительно перед первым сеансом ФДТ провели 3 процедуры внутрибрюшинного введения озонированного физиологического раствора (ОФР) с концентрацией озона в озоно-кислородной смеси 400 мкг/л 0,5 мл ОФР на массу животного 180 г, с интервалом между введением ОФР - 48 часов, через 20 часов после последней процедуры внутрибрюшного введения ОФР осуществили введение в 3 точки злокачественного новообразования 0,53 мл 0,3% раствора фотосенсибилизатора «Фотосенс» на основе сульфинированного фталоцианина гидроксиалюминия, через 6-12 часов после введения ФС каждую из точек облучили в течение 10 минут светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см2 и плотностью энергии 60 Дж/см2, затем через 24 часа после первого сеанса ФДТ провели 2 процедуры внутрибрюшинного введения по 0,5 мл ОФР с концентрацией озона в озоно-кислородной смеси 500 мкг/л перед вторым сеансом ФДТ, и с интервалом между процедурами ОФР 24 часа, проведение второго сеанса ФДТ осуществили через 48 часов после проведения 2-ой процедуры внутрибрюшинного введения ОФР, для этого в опухоль ввели 0,11 мл 0,3% раствор ФС в три точки злокачественного новообразования, через 6-12 часов после введения ФС каждую из точек введения в течение 10 минут облучали светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см2 и плотностью энергии 60 Дж/см, через 24 часа после второго сеанса ФДТ были проведены 3 процедуры внутрибрюшинного введения 0,5 мл ОФР с концентрацией озона в озоно-кислородной смеси 200 мкг/л с интервалом между процедурами ОФР 24 часа.

На 23 сутки после перевивки опухолевого штамма РА наркотизированное животное декапитировали. Масса животного на тот момент составила 185 г, а опухолевый очаг не обнаруживался визуально и при пальпировании. Для крысы №61 величина К прироста на 23-е сутки роста РА составила - 1, что говорит о полной деградации опухолевого узла.

Пример 2.

Крысе №62, самцу весом 207 г, в возрасте 2 месяцев ввели подкожно в область левого бедра инокулюм опухолевого штамма РА в растворе Хенкса (1:3) объемом 0,5 мл.

На десятые сутки развития новообразования при размере его d1=d2=2 см, животному была проведена фото динамическая терапия, как в примере 1, при этом объем вводимого в опухоль раствора 0,3% ФС, составил 1,25 мл при первом сеансе ФДТ и 0,92 мл при втором (из расчета 0,3 мл/см3 опухоли).

На 23 сутки после перевивки опухолевого штамма РА наркотизированное животное декапитировали. Масса животного на тот момент составила 210 г, а морфометрические характеристики опухоли: d1=1,65 см, d2=1,60 см.

Для крысы №62 величина К прироста на 23-е сутки роста РА составила - 0,47, что говорит о частичной деградации опухолевого узла.

Пример 3.

Крысе №63, самцу весом 198 г в возрасте 2 месяцев ввели подкожно в область левого бедра инокулюм опухолевого штамма РА в растворе Хенкса (1:3) объемом 0,5 мл.

На десятые сутки развития новообразования при размере опухоли d1=d2=1,5 см животному была проведена фото динамическая терапия как в примере 1, при этом объем вводимого в опухоль раствора 0,3% ФС при втором сеансе ФДТ, составил 0,27 мл (из расчета 0,3 мл/см3 опухоли). На 23 сутки после перевивки опухолевого штамма РА наркотизированное животное декапитировали. Масса животного на тот момент составила 203 г, а морфометрические характеристики опухоли: d1=1,2 см, d2=1,2 см. Для крысы №63 К прироста на 23-е сутки роста РА составил - 0,72, что говорит о почти полной деградации опухолевого узла.

Как видно из полученных результатов, предлагаемый способ является эффективным при проведении фотодинамической терапии злокачественных новообразований в эксперименте.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Shirasu N., Nam S.O., Kuroki M. Tumor-targeted photodynamic therapy. Anticancer Res. 2013, Jul, 33(7), p. 2823.

2. Миронов А.Ф. Фотодинамическая терапия - новый эффективный метод диагностики и лечения злокачественных опухолей. Соросовский образовательный журнал. 1996, №8, с. 32.

3. Щербатюк Т.Г. Озонотерапия злокачественных новообразований: за и против. Нижегородский медицинский журнал. 2003, №1, с. 52.

4. Патент РФ №2160615, заявка №2000102465/14 от 03.02.2000 на «Способ предоперационной фотодинамической терапии», авт. Аблицов Ю.А. и др.

5. Лунин В.В., Попович М.П., Ткаченко С.Н. Физическая химия озона. М, МГУ. 1998, с. 480.

6. Заявка РФ №96112516 от 19.06.1996 на «Способ озоно-фотодинамической терапии злокачественных новообразований», авт. Логинов Л.Е. и др.

7. Прототип. Щербатюк Т.Г., Плеханова Е.С., Чернигина И.А., Терентюк Г.С., Бучарская А.Б. Новая экспериментальная схема лечения опухолей на основе фотодинамической терапии. Российский биотерапевтический журнал. 2016, №1, т. 15, с. 123.

8. Алехина С.П., Щербатюк Т.Г. Озонотерапия: клинические и экспириментальные аспекты. Н. Новгород. Изд-во «Литера». 2003, с. 240.

9. Практикум по патологической физиологии. Под редакцией проф. С.М. Павленко. Издание третье. М. Медицина. 1966, с. 220.

10. Ярославцева-Исаева Е.В., Каплан М.А., Романко Ю.С. и др. Разработка методики фотодинамической терапии экспериментальной опухоли (саркома M1) при локальном введении фотосенсибилизатора. Российский биотерапевтический журнал. 2003, т. 2, №4, с. 19.

11. Трещалина Е.М., Жукова О.С., Герасимова Г.К. и др. «Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ». М. Медицина. Изд. 2, 2005.

Способ фотодинамической терапии злокачественных новообразований в эксперименте, включающий внутрибрюшинное введение озонированного физиологического раствора и проведение двух сеансов фотодинамической терапии (ФДТ), отличающийся тем, что предварительно перед первым сеансом ФДТ проводят 3 процедуры внутрибрюшинного введения озонированного физиологического раствора (ОФР) с концентрацией озона в озоно-кислородной смеси 400 мкг/л из расчета 0,5 мл ОФР на животное массой 200±25 г, с интервалом между процедурами введения ОФР - 48 часов, через 20 часов после последней процедуры внутрибрюшного введения ОФР осуществляют введение в три точки злокачественного новообразования 0,3% раствора фотосенсибилизатора (ФС), в частности на основе сульфинированного фталоцианина гидроксиалюминия, из расчета 0,3 мл/см новообразования, через 6-12 часов после введения ФС каждую из точек облучают в течение 10 минут светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см и плотностью энергии 60 Дж/см, затем через 24 часа после первого сеанса ФДТ проводят 2 процедуры внутрибрюшинного введения ОФР с концентрацией озона в озоно-кислородной смеси 500 мкг/л из расчета 0,5 мл на животное массой 200±25 г, с интервалом между введением ОФР - 24 часа, перед вторым сеансом ФДТ после 2-й процедуры введения ОФР через 48 часов в опухоль вводят 0,3% раствор ФС в три точки злокачественного новообразования из расчета 0,3 мл/см новообразования, через 6-12 часов после введения ФС каждую из точек в течение 10 минут облучают светодиодным лазером с длиной волны 660±10 нм, плотностью мощности излучения 100 мВт/см и плотностью энергии 60 Дж/см, через 24 часа после второго сеанса ФДТ проводят 3 процедуры внутрибрюшинного введения 0,5 мл ОФР с концентрацией озона в озоно-кислородной смеси 200 мкг/л, с интервалом между процедурами введения ОФР 24 часа.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 17.
10.05.2018
№218.016.4e37

Способ лечения роговично-конъюнктивального ксероза

Изобретение относится к медицине, в частности к офтальмологии и клинической фармакологии, и может быть использовано для лечения роговично-конъюнктивального ксероза. Способ включает введение в виде глазных капель лекарственных веществ в определенном режиме. Препарат, содержащий действующие...
Тип: Изобретение
Номер охранного документа: 0002652581
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4e46

Способ хирургического лечения аваскулярного некроза головки бедренной кости

Изобретение относится к медицине, а именно к хирургии в травматологии и ортопедии, и предназначено для использования при лечении аваскулярного некроза головки бедренной кости. Послойно осуществляют доступ к тазобедренному суставу. Производят открытый хирургический вывих головки бедренной кости...
Тип: Изобретение
Номер охранного документа: 0002652584
Дата охранного документа: 26.04.2018
18.05.2018
№218.016.51e4

Способ микроскопической оценки цитотоксичности компонентов материалов скаффолдов

Изобретение относится к медицине, биологии, биотехнологии, фармакологии и может быть использовано для оценки цитотоксичности компонентов, входящих в состав скаффолдов, используемых в тканевой инженерии, а именно при пластике или замещении дефектов тканей организма с обеспечением стимуляции их...
Тип: Изобретение
Номер охранного документа: 0002653476
Дата охранного документа: 08.05.2018
09.06.2018
№218.016.5a64

Способ интегративной оценки адаптационного потенциала и реабилитационного прогноза у больных с последствиями спинальной травмы

Изобретение относится к медицине, рефлексодиагностике, может быть использовано при выборе персонифицированного комплекса реабилитационных мероприятий у больных с последствиями позвоночно-спинномозговой травмы (ПСМТ). Для интегративной оценки адаптационного потенциала (АП) и реабилитационного...
Тип: Изобретение
Номер охранного документа: 0002655529
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5c76

Способ формирования илеоурокутанеостомы

Изобретение относится к хирургии и может быть применимо для формирования илеоурокутанеостомы. Из выделенного участка подвздошной кишки формируют два сегмента - дистальный длиной 25-35 см и проксимальный длиной 15-20 см. Концы дистального сегмента анастомозируют с мочеточниками. Формируют...
Тип: Изобретение
Номер охранного документа: 0002655950
Дата охранного документа: 01.06.2018
10.07.2018
№218.016.6f33

Способ получения соли 3,28-дифосфата бетулина

Изобретение относится к способу получения солей 3,28-дифосфата бетулина, который может применяться в химико-фармацевтической промышленности. Предложенный способ включает обработку дифосфодихлорида бетулина водой, используя раствор дифосфодихлорида бетулина в диоксане, обработку осуществляют...
Тип: Изобретение
Номер охранного документа: 0002660649
Дата охранного документа: 09.07.2018
19.08.2018
№218.016.7cf0

Способ дифференциальной диагностики шизофрении и злокачественных новообразований головного мозга

Изобретение относится к области медицины, а именно к диагностике путем исследования биологической жидкости с помощью физических и химических методов исследования. Способ дифференциальной диагностики шизофрении и злокачественных новообразований головного мозга включает клинико-лабораторное...
Тип: Изобретение
Номер охранного документа: 0002664444
Дата охранного документа: 17.08.2018
29.08.2018
№218.016.812d

Способ доставки биологически активных веществ в скаффолд

Изобретение относится к медицине, в частности к способу доставки биологически активных веществ в скаффолд. В качестве контейнеров используют тени эритроцитов, получаемых путем гипоосмотического шока нативных эритроцитов и инкубации их в растворе биологически активных веществ с последующим...
Тип: Изобретение
Номер охранного документа: 0002665155
Дата охранного документа: 28.08.2018
26.10.2018
№218.016.9690

Способ оценки эффективности проведенной хирургической реваскуляризации у пациентов с критической ишемией нижней конечности

Изобретение относится к медицине, а именно к сосудистой хирургии. Выполняют электронейромиографию нижних конечностей перед хирургической реваскуляризацией и спустя две недели. Определяют скорость распространения возбуждения (СРВ) для большеберцового и малоберцового нервов. Рассчитывают и...
Тип: Изобретение
Номер охранного документа: 0002670692
Дата охранного документа: 24.10.2018
22.02.2019
№219.016.c5ab

Способ коррекции недифференцированной дисплазии соединительной ткани у подростков и взрослых

Изобретение относится к медицине и может быть использовано для коррекции недифференцированной дисплазии соединительной ткани у подростков и взрослых. Для этого принимают средство для нормализации микрофлоры кишечника в терапевтических дозах во время еды и курсовой прием препарата в течение...
Тип: Изобретение
Номер охранного документа: 0002680390
Дата охранного документа: 20.02.2019
Показаны записи 1-3 из 3.
27.08.2014
№216.012.f056

Cпособ индуцированных повреждений днк в индивидуальных неделимых ядросодержащих клетках

Изобретение относится к медицине и предназначено для диагностики злокачественных новообразований. Из образца клеток крови готовят слайды из нескольких слоев агарозы, один из которых содержит индивидуальные неделимые ядросодержащие клетки. Осуществляют повреждения ДНК клеток фосфатно-солевым...
Тип: Изобретение
Номер охранного документа: 0002527345
Дата охранного документа: 27.08.2014
27.12.2014
№216.013.16cf

Способ скрининга и мониторинга онкологических заболеваний и набор для его осуществления (варианты)

Группа изобретений относится к области биохимии. Заявлены варианты способа скрининга и мониторинга онкологических заболеваний, включающего забор образца ткани, выделение из образца ткани РНК, синтез кДНК, амплификацию методом множественной обратной транскрипции полимеразой цепной реакции с...
Тип: Изобретение
Номер охранного документа: 0002537263
Дата охранного документа: 27.12.2014
29.05.2023
№223.018.726b

Способ моделирования физической нагрузки для оценки работоспособности лабораторных крыс при дисбиотических нарушениях кишечника

Изобретение относится к экспериментальной медицине, и может быть использовано для исследования изменений толерантности к физической нагрузке организма мелких лабораторных грызунов и тестирования способов ее коррекции факторами различной природы в условиях дисбиотических нарушений кишечника....
Тип: Изобретение
Номер охранного документа: 0002796316
Дата охранного документа: 22.05.2023
+ добавить свой РИД