×
20.02.2019
219.016.c36a

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам нанесения покрытий из наночастиц и может быть использовано в плазмометаллургии, плазмохимии и машиностроительной промышленности. Технический результат - повышение рабочих характеристик покрытий, упрощение технологии, повышение ее экологичности. Способ включает установку плазмотрона в камеру с пониженным давлением, поддержание динамического вакуума в камере, подачу плазмообразующего газа и порошка напыляемого материала в плазмотрон и распыление материала сверхзвуковым потоком плазмы в камере с образованием паровой фазы распыляемого материала. При этом в камере у выходного сечения плазмотрона устанавливают стенку в форме тупого угла АСВ таким образом, что упомянутый угол является внешним по отношению к углу отклонения части СВ стенки от оси плазменной струи, составляющему не менее 10 градусов. Распыление осуществляют с обеспечением расширения подаваемого газового потока при обтекании плазменной струи упомянутой стенки и образования веера волн разрежения в ее угловой точке (С), с конденсацией наночастиц из паровой фазы напыляемого материала в плазмообразующем газе и их выпадением на подложке с образованием покрытия, состоящего из наночастиц. 1 ил.

Изобретение относится к области нанотехнологий, используемых для получения наночастиц с последующим нанесением покрытий, и может найти применение в плазмометаллургии, плазмохимии и машиностроительной промышленности.

Известен способ нанесения покрытий [1], в котором при помощи плазменного распыления порошков материалов микронных размеров сверхзвуковыми потоками плазмы в камерах с пониженным давлением наносятся покрытия на подложку. Во время нанесения покрытия в камере поддерживается динамический вакуум, т.е. процесс происходит в камере, в которую, с одной стороны, из плазмотрона поступает плазма, а с другой стороны, постоянно ведется откачка атмосферы камеры вакуумными насосами. Недостатком данного способа является то, что напыление на подложку происходит смесью как мелких (0,5-1 мкм), так и крупных (1-5 мкм) частиц напыляемого вещества, что затрудняет обеспечение как высокой адгезионной прочности сцепления покрытия с подложкой, так и высокой прочности всего покрытия в целом.

Задачей предлагаемого изобретения является существенное улучшение рабочих характеристик покрытий за счет нанесения их наночастицами, получающихся экологически безопасным способом из порошков различных материалов микронного уровня в едином производственном цикле.

Для достижения этого технического результата в предлагаемом способе нанесения покрытий, включающем установку плазмотрона в камеру с пониженным давлением, поддержание динамического вакуума в камере, подачу плазмообразующего газа и порошка напыляемого материала в плазмотрон и распыление материала сверхзвуковым потоком плазмы в камере с образованием паровой фазы распыляемого материала, в камере у выходного сечения плазмотрона устанавливают стенку в форме тупого угла АСВ таким образом, что упомянутый угол является внешним по отношению к углу отклонения части СВ стенки от оси плазменной струи, составляющему не менее 10 градусов, а распыление осуществляют с обеспечением расширения подаваемого газового потока при обтекании плазменной струи упомянутой стенки и образования веера волн разрежения в угловой точке (С), с конденсацией наночастиц из паровой фазы напыляемого материала в плазмообразующем газе и их выпадением на подложке с образованием покрытия, состоящего из наночастиц.

На чертеже схематично представлен плазмотрон, с помощью которого может быть осуществлен предлагаемый способ. Для осуществления способа используется течение Прандтля-Майера [2], которое реализуется при сверхзвуковом обтекании внешнего тупого угла с образованием в угловой точке веера волн разряжения. В вакуумную камеру помещается плазмотрон [3], в плазмообразующий газ которого добавляется порошок материала, из которого необходимо получить наночастицы. Струя плазмы, содержащая плазмообразующий газ и материал в паровой фазе, в которую он перешел в плазмотроне и в сверхзвуковом сопле 1 плазмотрона (см. чертеж), истекает в область динамического вакуума. В недорасширенной струе плазмы при этом возникает висячий скачок уплотнения 2, внутри которого реализуется сверхзвуковое течение, совпадающее с истечением струи в вакуум [4].

Вблизи выходного сечения сопла плазмотрона, внутри висячего скачка уплотнения, устанавливается стенка в форме внешнего тупого угла 3 с углом отклонения от оси плазменной струи не менее 10 градусов. Истекающая из сопла плазмотрона с числом Маха Ма струя разгоняется внутри висячего скачка уплотнения до еще большего числа Маха Мк перед угловой точкой С. В точке С стенка поворачивает, образуя с первоначальным направлением угол β0. При сверхзвуковом обтекании тупого угла АВС газ расширяется (см. чертеж), ибо область, занятая газом, увеличивается; при этом расширении плазма доразгоняется до числа Маха ML>MK. В угловой точке С при этом образуется веер волн разряжения, в котором сверхзвуковой поток меняет направление с АС на СВ и значительно ускоряется.

При ускорении плазмы в окрестности точки С от МК до ML происходит резкое падение статической температуры и статического давления потока. Плазма, находящаяся на линии тока 4 до угловой точки С, при развороте на угол β0 переходит на линии тока 5, которые характеризуют сверхзвуковое течение плазмы над стенкой СВ. Расчеты отрицательных величин градиентов температуры и давления, которые при этом реализуются в окрестности точки С при β0~10÷20° показали, что они достигают очень больших величин: ~108 [К/с] и ~108 [Па/с], соответственно.

Резкое охлаждение и резкое падение давления в плазме, содержащей парообразную фазу материала, приводит к осуществлению в окрестности точки С в области KCL конденсации с образованием наночастиц 6 из порошка материала, помещенного в плазмообразующий газ плазмотрона. Образующиеся наночастицы способны частично выпадать на стенку СВ, но основное их количество располагается на линиях тока 5, находясь в сверхзвуковом потоке при числе Маха ML; абсолютная величина скорости, которую наночастицы достигают в области LCB, ~2 км/с. Размещая в этой области подложку 7, можно в непрерывном производственном цикле получать на ней покрытие из наночастиц, которое будут обладать более высокими рабочими характеристиками, чем покрытие из частиц микронного уровня, а расплавленные частицы порошка не выпадают на подложку, так как в веере волн разряжения они не отклоняются от своего первоначального направления вдоль оси плазменной струи.

Предлагаемое техническое решение позволяет достаточно просто получать наночастицы из любых веществ: металлов, оксидов, карбидов, нитридов, боридов и т.п. и затем в непрерывном производственном цикле получать из них покрытия; при этом способ нанесения покрытий с помощью наночастиц является экологически безопасным, т.к. весь процесс, начиная от формирования наночастиц до нанесения покрытий, происходит в замкнутом объеме вакуумной камеры, полностью изолированной от обслуживающего персонала.

Способ нанесения покрытий, включающий установку плазмотрона в камеру с пониженным давлением, поддержание динамического вакуума в камере, подачу плазмообразующего газа и порошка напыляемого материала в плазмотрон и распыление материала сверхзвуковым потоком плазмы в камере с образованием паровой фазы распыляемого материала, отличающийся тем, что в камере у выходного сечения плазмотрона устанавливают стенку в форме тупого угла АСВ таким образом, что упомянутый угол является внешним по отношению к углу отклонения части СВ стенки от оси плазменной струи, составляющему не менее 10°, а распыление осуществляют с обеспечением расширения подаваемого газового потока при обтекании плазменной струи упомянутой стенки и образования веера волн разрежения в угловой точке (С), с конденсацией наночастиц из паровой фазы напыляемого материала в плазмообразующем газе и их выпадением на подложке с образованием покрытия, состоящего из наночастиц.
Источник поступления информации: Роспатент

Показаны записи 11-19 из 19.
20.02.2019
№219.016.c40c

Способ нанесения теплозащитного покрытия

Изобретение относится к вакуумной технологии нанесения теплозащитных покрытий на изделия из меди и может быть использовано в авиа- и машиностроении и других областях. Способ нанесения теплозащитного покрытия включает размещение изделия в вакуумной камере. Затем осуществляют наноструктурирование...
Тип: Изобретение
Номер охранного документа: 0002467878
Дата охранного документа: 27.11.2012
29.03.2019
№219.016.eded

Способ плазменного нанесения наноструктурированного теплозащитного покрытия

Изобретение относится к способу плазменного нанесения наноструктурированного теплозащитного покрытия. Предварительно на срезе сверхзвукового сопла плазмотрона устанавливают конический насадок, внутренняя поверхность которого образует с внутренней поверхностью сопла излом, что позволяет после...
Тип: Изобретение
Номер охранного документа: 0002683177
Дата охранного документа: 26.03.2019
19.04.2019
№219.017.3412

Способ нанесения покрытий

Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может быть использовано в машиностроительной промышленности, а именно в ракетостроении и авиастроении. Способ включает установку плазмотрона в камеру с пониженным давлением, размещение подложки для нанесения...
Тип: Изобретение
Номер охранного документа: 0002462536
Дата охранного документа: 27.09.2012
07.09.2019
№219.017.c83d

Способ изготовления сферических металлических порошков и установка для его осуществления

Группа изобретений относится к изготовлению сферических металлических порошков, которые могут быть использованы для аддитивных технологий. Способ включает нагрев боковой поверхности вращающейся цилиндрической заготовки в вакууме до температуры плавления с помощью электронного пучка,...
Тип: Изобретение
Номер охранного документа: 0002699431
Дата охранного документа: 05.09.2019
24.10.2019
№219.017.da85

Способ и установка для поверхностного упрочнения головок стальных рельсов действующих путей

Группа изобретений относится к способам и установкам для поверхностного упрочнения головок стальных рельсов действующих путей. Способ включает нагрев одной или двух поверхностей головок одного или двух рельсов электронными пучками, выведенными в воздушную атмосферу и перемещающимися...
Тип: Изобретение
Номер охранного документа: 0002704051
Дата охранного документа: 23.10.2019
31.12.2020
№219.017.f47c

Композиционный слоистый самозалечивающийся материал (варианты)

Изобретение относится к слоистым композитам (варианты), обладающим способностью самостоятельно восстанавливать свою целостность после причиненных им механических повреждений (самозалечиваться), применяются для изготовления конструкций, которым необходима защита от возникновения...
Тип: Изобретение
Номер охранного документа: 0002710623
Дата охранного документа: 30.12.2019
23.05.2023
№223.018.6d00

Термомеханическая система обеспечения теплового режима космического аппарата

Изобретение относится к средствам терморегулирования космических аппаратов (КА). Предлагаемая система содержит плоские экраны (2), установленные над защищаемой поверхностью (1) посредством тепловых микромеханических актюаторов (ММА) (3), которые с одной стороны закреплены на поверхности (1)...
Тип: Изобретение
Номер охранного документа: 0002774867
Дата охранного документа: 23.06.2022
17.06.2023
№223.018.8020

Способ изготовления пули

Изобретение относится к производству вооружения и может быть использовано при изготовлении снарядов, в частности пуль из вольфрамового сплава. Из вольфрамового сплава на заготовке нарезают две кольцевые канавки, на поверхность канавок наносят гальваническое никелевое покрытие. Из медного прутка...
Тип: Изобретение
Номер охранного документа: 0002760119
Дата охранного документа: 22.11.2021
17.06.2023
№223.018.8103

Способ изготовления деталей из высокоуглеродистых сталей

Изобретение относится к металлургии, а именно к изготовлению деталей из высокоуглеродистых сталей в промышленном производстве. Способ изготовления деталей из высокоуглеродистых инструментальных сталей включает закалку заготовок деталей, их предварительную и окончательную механическую обработку...
Тип: Изобретение
Номер охранного документа: 0002763841
Дата охранного документа: 11.01.2022
+ добавить свой РИД