×
20.02.2019
219.016.c25f

ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ СО ЩЕЛОЧНЫМ МЕТАЛЛОМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002456698
Дата охранного документа
20.07.2012
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение предназначено для повышения эффективности работы термоэлектрического преобразователя со щелочным металлом (АМТЕС), преобразующим тепловую энергию непосредственно в электрическую энергию. Изобретение может быть использовано как в наземных, так и в космических условиях как генератор, преобразующий различную тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) с высоким КПД в электрическую энергию. Технический результат - повышение срока службы термоэлектрического преобразователя, стабильности его выходных электрических параметров за счет материалов и конструкции электродов и твердого электролита. Термоэлектрический преобразователь тепловой энергии в электрическую со щелочным металлом содержит в качестве твердого электролита ориентированный пиролитический графит интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям и служит одновременно одним из электродов, второй электрод выполнен ив металла с открытой пористостью и размещен вблизи от твердого электролита в холодной области, а рабочим телом служат щелочные металлы: цезий, рубидий и калий. 1 з.п.ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области энергетики, точнее к системам, преобразующим тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) непосредственно в электрическую энергию как в наземных, так и в космических условиях, и может быть использовано для повышения эффективности работы одного из видов этого типа устройств, а именно, термоэлектрических преобразователей энергии (ТЭП) со щелочными металлами (далее - Alkali metal thermal to Electric Conversion (AMTEC).

Известны основополагающие работы (1. Патент США №3458356, 1969, Thermo-Electric Generator, J.T.Kummer and N.Weber, 2. Thermoelectric Energy Conversion with Solid Electrolytes, Science, 1983, p.915, T.Cole), в которых описаны устройство и способ преобразования тепловой энергии непосредственно в электрическую.

Наиболее близким прототипом является термоэлектрический преобразователь со щелочным металлом (см. Патент США №3458356, 1969, Thermo-Electric Generator, J.T.Kummer and N.Weber)

ТЭП со щелочным металлом представляет собой замкнутый вакуумный объем со средствами подачи и отвода тепла и разделенный твердым электролитом на две герметичные части - зоны испарения и конденсации рабочего тела. Зоны испарения и конденсации рабочего тела соединены патрубком с электромагнитным насосом. Твердый электролит с обеих сторон покрыт тонкопленочными пористыми металлическими электродами, которые с помощью электрических выводов через стенку устройства подсоединены к нагрузке. Твердый электролит представляет собой β″Al2O3,

(далее, BASE. - beta" - alumina solid electrolyte).

Рабочее тело - натрий заполняет область высокого давления ТЭП, которую поддерживают при температуре T2 в интервале 800…1300 K с помощью внешнего источника тепла. При этих температурах давление насыщенных паров натрия находится в интервале 0,05…2,5 атм. (5,0·103…2,5·105 Пa). Область низкого давления в основном содержит пар натрия и малое количество жидкого натрия и находится при температуре T1 в интервале 400…800 K, при которой производится давление пара натрия в интервале от 10-9 до 10-2 атм. (10-4 до 103 Па).

Пар натрия из области с высоким давлением, диффундируя через пористые электроды и твердый электролит, попадает в область низкого давления, конденсируясь в жидкую фазу, которая затем с помощью электромагнитного наноса по патрубку возврата жидкого натрия возвращается в высокотемпературную область для рециркуляции через твердый электролит, тем самым замыкая циркуляционный контур и заканчивая рабочий цикл процесса.

Вначале цикла пар натрия при температуре T1 из зоны конденсации, попадая в высокотемпературную область, аккумулирует тепловую энергию до тех пор, пока не достигнет температуры Т2. Температура генерирует давление (химический потенциал) для силового движения ионов натрия сквозь твердый электролит по направлению к поверхности с низким давлением. В BASE натрий диффундирует только в виде как Na+ по реакции:

Эта реакция имеет место на интерфейсе жидкий натрий (пар) - BASE, когда натрий диффундирует через твердый электролит. Символ (Na+) BASE означает, что ион натрия является проводником в β″Al2O3.

При разомкнутом контуре ионы натрия благодаря термической кинетической энергии диффундируют по направлению к поверхности BASE, находящейся при низком давлении, принося туда положительный заряд. Достаточно сильное электрическое поле возникает на BASE и существует до тех пор, пока есть движение потока ионов натрия. Напряжение разомкнутой цепи дается уравнением Нернста для концентрационной ячейки:

Vэдc=RT2F-lln(P2/P4),

где R - газовая константа, F - число Фарадея, Р2 - давление пара натрия при температуре Т2 и Р4 - давление пара натрия на пористом электроде, примыкающем к низкой области давления пара натрия.

Когда плотность тока через BASE равна нулю, P4 будет зависеть от давления пара натрия поверхности конденсации P1 выражением:

P4(i=0)=P1(T2/T1)1/2

Когда внешняя цепь замкнута, электроны проходят через нагрузку и нейтрализуют ионы натрия на пористом электроде низкого давления (обратное направление реакции 1). Далее уже нейтральные атомы натрия, обладая теплотой испарения, покидают пористый электрод, движутся через паровое пространство и выделяют теплоту конденсации при температуре T1.

Напряжение, которое возникает вдоль твердого электролита, является силой, которая двигает электроны через нагрузку, при которой совершается электрическая работа.

Основным недостатком термоэлектрического генератора со щелочным металлом (АМТЕС) является низкая стабильность тонкопленочных металлических электродов, связанная с коррозией материала, из-за наличия в окружающей электроды атмосфере активных составляющих: кислорода, водорода, углеводородов и др.

Технический результат - повышение срока службы термоэлектрического преобразователя, стабильности его выходных электрических параметров.

Для этого предложен термоэлектрический преобразователь со щелочным металлом. Состоящий из средств подвода и отвода тепла, вакуумированного объема, разделенного твердым электролитом на две герметичные области, двух электродов с герметичными электрическими выводами на нагрузку, патрубка возврата жидкого конденсата щелочного металла из зоны конденсации в зону испарения с установленным на нем электромагнитным насосом, при этом в качестве твердого электролита используют ориентированный пиролитический графит интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям, являющийся одновременно одним из электродов, а второй электрод выполнен из металла с открытой пористостью, разделен с первым электродом межэлектродным промежутком и расположен со стороны зоны конденсации.

Кроме того, в качестве щелочного металла используют цезий или рубидий, или калий.

На фигурах 1 и 2 показан предлагаемый термоэлектрический преобразователь со щелочным металлом, который содержит следующие основные узлы:

1. Электрическая нагрузка, контур потребителя;

2. Высокотемпературная область (Температура 800…1300 K);

3. Металлокерамические электрические выводы электрод-нагрузка;

4. Изолятор из окиси алюминия;

5. Зона испарения щелочного металла;

6. Пар щелочного металла (цезий, рубидий, калий);

7. Твердый электролит (электрод) - ориентированный пиролитический графит, интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям;

8. Патрубок для возврата жидкого конденсата щелочного металла из зоны конденсации в зону испарения;

9. Металлический электрод с открытой пористостью;

10. Изолятор из окиси алюминия;

11. Электромагнитный насос;

12. Зона испарения натрия из капиллярной структуры;

13. Низкотемпературная область (Температура 400…800 K).

Предлагаемый термоэлектрический преобразователь со щелочным металлом в качестве рабочего тела содержит в качестве твердого электролита 5 ориентированный пиролитический графит, интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям. Твердый электролит служит одновременно одним из электродов, второй электрод 8 выполнен из металла с открытой пористостью и размещен вблизи от твердого электролита в низкотемпературной области. Рабочим телом служат щелочные металлы: цезий или рубидий, или калий.

Электроды разделены межэлектродным промежутком и изолированы от корпуса диэлектриком из окиси алюминия 4 и 10. Электрические контакты от обоих электродов выведены через металлокерамические выводы 3 через корпус изделия и подключены к внешней нагрузке 1.

Термоэлектрический преобразователь со щелочным металлом работает следующим образом. Рассмотрим работу устройства с рабочим телом, в качестве которого использован цезий. Использование рубидия и калия обусловлено их аналогичными цезию физико-химическими свойствами. Щелочные металлы цезий, рубидий и калий обладают низким потенциалом ионизации (3,89 eV - Cs, 4,34 eV - Rb, 5,14 eV - K в то время, как работа выхода электронов для графита равна 5,5 eV). Это позволяет нейтральным атомам щелочных металлов в нагретом состоянии, взаимодействуя с графитом, отдавать валентный электрон зоне проводимости графита, ионизироваться и затем внедряться между слоями графита (См. Каландаришвили А.Г. Источники рабочего тела для термоэмиссионных преобразователей энергии. - 2-е издание, доп., - Ж: Энергоатомиздат, 1993 г. - 304 с., с.183, а затем под действием перепада давления перемещаться из горячей в холодную зону, из которой они затем испаряются в виде ионов цезия. Далее они, перемещаясь, достигают металлического электрода с открытой пористостью, выполненный, например, из молибдена, вольфрама и др., где нейтрализуются и в дальнейшем в виде нейтральных атомов цезия достигают и адсорбируются в зоне конденсации. Содержание цезия в твердом электролите зависит от температуры графита и величины давления пара цезия над поверхностью графита и может управляться требуемым образом.

Разделение электродов и использование твердого электролита из графита, интеркалированного щелочным металлом, позволяет повысить стабильность и срок службы термоэлектрического преобразователя со щелочным металлом. Технический эффект достигается за счет исключения тонкопленочных пористых металлических электродов, подверженных постоянной коррозии, что приводит к нестабильности выходных электрических параметров преобразователя.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 259.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304b

Ядерная паропроизводительная установка

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых...
Тип: Изобретение
Номер охранного документа: 0002477898
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304f

Способ формирования проводников в наноструктурах

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы...
Тип: Изобретение
Номер охранного документа: 0002477902
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32e2

Способ извлечения гелия из природного газа

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании гелия из природного газа. Способ извлечения гелия из природного газа включает получение гелиевого концентрата с последующей его низкотемпературной или...
Тип: Изобретение
Номер охранного документа: 0002478569
Дата охранного документа: 10.04.2013
Показаны записи 1-8 из 8.
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.04.2013
№216.012.37fd

Термотуннельный преобразователь

Изобретение относится к области энергетики и может быть использовано для прямого преобразования тепловой энергии в электрическую в различных автономных устройствах, где требуется невысокая электрическая мощность с длительным сроком службы. Технический эффект - повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002479886
Дата охранного документа: 20.04.2013
20.02.2019
№219.016.c25b

Блок термоэлектрических преобразователей со щелочным металлом

Изобретение предназначено для повышения эффективности работы термоэлектрического преобразователя со щелочным металлом (АМТЕС), преобразующим тепловую энергию непосредственно в электрическую энергию. Изобретение может быть использовано как в наземных, так и в космических условиях, как генератор,...
Тип: Изобретение
Номер охранного документа: 0002456699
Дата охранного документа: 20.07.2012
20.02.2019
№219.016.c3a3

Термоэмиссионный преобразователь

Изобретение относится к термоэмиссионным преобразователям тепловой энергии в электрическую, они широко применяются в ядерных энергетических установках. Термоэмиссионный преобразователь содержит два изолированных электрода, находящихся в вакуумном объеме. Резервуар с рабочим телом - цезий...
Тип: Изобретение
Номер охранного документа: 0002449410
Дата охранного документа: 27.04.2012
29.03.2019
№219.016.f7f4

Способ получения в графите графеновых ячеек с разнородными интеркалированными добавками

Изобретение может быть использовано в эмиттерах с регулируемой работой выхода электронов, плазменных диодах, термоэмиссионных преобразователях энергии, термотуннельных преобразователях тепловой энергии в электрическую. Ориентированный пиролитический графит помещают в вакуумный объем между двумя...
Тип: Изобретение
Номер охранного документа: 0002466087
Дата охранного документа: 10.11.2012
29.03.2019
№219.016.f7ff

Устройство для подачи пара цезия в термоэммисионный преобразователь

Изобретение касается термоэмиссионного преобразования тепловой энергии в электрическую и относится к устройствам подачи пара цезия в межэлектродный зазор термоэмиссионного преобразователя (ТЭП). Технический результат - повышенная емкость по цезию достигается за счет того, что предложено...
Тип: Изобретение
Номер охранного документа: 0002464668
Дата охранного документа: 20.10.2012
09.05.2019
№219.017.4d9d

Способ количественного определения атомов щелочного металла

Использование: для количественного определения атомов щелочного металла. Сущность: заключается в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары атомов щелочного металла и выдерживают образец при повышенной температуре, при...
Тип: Изобретение
Номер охранного документа: 0002335762
Дата охранного документа: 10.10.2008
+ добавить свой РИД