×
20.02.2019
219.016.bfa6

Результат интеллектуальной деятельности: РЕГУЛЯТОР ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002355004
Дата охранного документа
10.05.2009
Аннотация: Изобретение относится к области оптоэлектроники и может найти применение в аппаратуре для оптической записи и воспроизведения информации. Регулятор интенсивности излучения включает в себя две призмы полного внутреннего отражения с регулируемым зазором между ними. На поверхность призм нанесены пленочные покрытия с показателем преломления большим, чем показатель преломления материала призм, причем произведение толщины пленочных покрытий на их показатель преломления лежит в диапазоне 0,2-0,4 мкм для видимой области спектра. Технический результат - уменьшение спектральной неравномерности коэффициентов пропускания и отражения. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области оптоэлектроники и может найти применение в различной аппаратуре для оптической записи и воспроизведения информации.

Известны многочисленные попытки решить проблему управления интенсивностью оптического излучения за счет использования различных физических и химических эффектов.

Так, например, имеются описания конструкций ослабителей излучения на основе нелинейно-оптического эффекта, известного как светоиндуцированное рассеяние. Светоиндуцированное рассеяние является основным механизмом в ослабителях на основе светоиндуцированных дифракционных решеток в кристаллах с примесью ионов переходных металлов (см. патент РФ №2282880 [1]). Эффект ослабления возникает за счет увеличения светорассеяния при увеличении интенсивности излучения.

Известны также жидкокристаллические регуляторы интенсивности излучения, в конструкциях которых используют слой жидкого кристалла (см., например, сборник Display Devices. Ed. J.I.Pankove. Springer-Verlage, Berlin. 1980 [2]), помещенного между прозрачными электродами и двумя скрещенными поляризаторами. При подаче на жидкокристаллический слой управляющего электрического сигнала происходит поворот плоскости поляризации света и изменение интенсивности света, проходящего через устройство в целом.

Регуляторы интенсивности света на основе линейного электрооптического эффекта состоят из кристалла, обладающего электрооптическим эффектом, либо органической или неорганической пленки, обладающей электрооптическим эффектом (см., например, W.Brunner, K.Junge. Wissensspeicher Lasertechnic. VEB Fachbuchverlag, Leipzig. 1987 [3]), помещенной между прозрачными электродами и двумя скрещенными поляризаторами. При подаче на электрооптический кристалл или пленку управляющего электрического сигнала происходит поворот плоскости поляризации света и изменение интенсивности света, проходящего через устройство в целом.

Регуляторы интенсивности света на основе электрохромного эффекта состоят из пленки неорганического или органического электрохромного материала и электролита, помещенных между прозрачными электродами (см., например, D.M.DeLongchamp, M.Kastantin, P.T.Hammond // Chem. Mater. 15. P.1575. 2003 [4]). При подаче на электроды управляющего электрического сигнала в результате электролиза происходит изменение химического состава пленки и изменение ее коэффициента пропускания.

Модуляторы света на основе нарушения полного внутреннего отражения (НПВО) представляются наиболее перспективными. Механизм модуляции в устройствах данного типа основан на изменении толщины зазора между двумя призмами полного внутреннего отражения либо на изменении показателя преломления слоя между ними. Это приводит к изменению условий туннелирования электромагнитной волны из первой призмы во вторую и, в результате, к изменению коэффициентов пропускания и отражения устройства. Устройства на основе НПВО могут быть использованы и как управляемые ослабители излучения с внешним управляющим сигналом. Изменение величины зазора между призмами может осуществляться, например, с помощью пьезоэлектрического движителя (см., например, патент РФ №2022433 [5]; патент США №5555327 [6]; патент США №5841916 [7]) либо с помощью магнитострикционных элементов (см., например, опубликованную заявку на патент РФ №96103862 [8]). Наиболее близким к заявляемому изобретению является устройство [7].

Достоинством устройств на основе НПВО является отсутствие светорассеяния, приводящего к искажению изображения, конструктивная простота и широкий температурный диапазон функционирования.

Одним из основных недостатков модуляторов света на основе нарушения полного внутреннего отражения является зависимость коэффициентов отражения и пропускания от длины волны.

Задача, на решение которой направлено заявляемое изобретение, состоит именно в преодолении этого основного недостатка, т.е. в создании конструкции, позволяющей уменьшить спектральную неравномерность коэффициентов пропускания и отражения устройства в несколько раз по сравнению с аналогами.

Поставленная задача решена за счет создания конструкции усовершенствованного регулятора интенсивности оптического излучения, включающего в себя две призмы полного внутреннего отражения, отличительной чертой которого является то, что на внутренние поверхности призм полного внутреннего отражения нанесены диэлектрические пленки с высоким показателем преломления, в которых происходит интерференция электромагнитной волны, проникающей из первой призмы. Для видимой области спектра при оптической толщине пленок, равной 0,2…0,4 мкм, в результате интерференции происходит компенсация спектральной неравномерности коэффициентов пропускания и отражения устройства при разных толщинах зазора между призмами.

В близком по замыслу варианте изобретения на внутренние поверхности призм полного внутреннего отражения нанесены диэлектрические пленки с высоким показателем преломления и дисперсией поглощения - увеличенным коэффициентом поглощения на длинноволновой границе рабочей спектральной области, в которых происходит интерференция электромагнитной волны, проникающей из первой призмы. Для видимой области спектра при оптической толщине пленок, равной 0,2…0,4 мкм, в результате интерференции и дисперсии поглощения происходит компенсация спектральной неравномерности коэффициентов пропускания и отражения устройства при разных толщинах зазора между призмами.

Для лучшего понимания существа заявляемого изобретения далее приводится его пояснение с привлечением графических материалов.

На Фиг.1 приведен вариант конструкции регулятора интенсивности излучения, где обозначены призмы 1, компенсирующие покрытия 2, пьезоэлектрический движитель 3 и держатели призм 4.

На Фиг.2 представлены спектральные зависимости коэффициента пропускания регулятора интенсивности излучения с компенсирующими покрытиями. 201 - d=0,01 мкм, 202 - 0,06 мкм, 203 - 0,1 мкм, 204 - 0,4 мкм.

На Фиг.3 представлены: вид 3.1 - спектральные зависимости коэффициента пропускания регулятора интенсивности излучения с поглощающим компенсирующим покрытием, где 301 - d=0,01 мкм, 302 - 0,06 мкм, 303 - 0,1 мкм, 304 - 0,4 мкм, вид 3.2 демонстрирует спектральную зависимость коэффициента поглощения компенсирующего покрытия θ=40°.

Фиг.4 показывает зависимость неравномерности спектральной характеристики регулятора интенсивности излучения от толщины зазора между призмами, где 401 - регулятор интенсивности излучения без компенсирующих покрытий, 402 - регулятор интенсивности излучения с непоглощающими компенсирующими покрытиями, 403 - регулятор интенсивности излучения с компенсирующими покрытиями, имеющими дисперсию поглощения.

Как видно из Фиг.1, устройство состоит из двух призм полного внутреннего отражения с показателем преломления 1,8. На внутренние поверхности призм нанесены компенсирующие покрытия из ZnO толщиной 0,13 мкм. Зазор d между призмами регулируется с помощью пьезоэлектрического движителя и изменяется от 0,02 до 0,6 мкм.

На Фиг.2 показана расчетная спектральная зависимость коэффициента пропускания регулятора интенсивности излучения с компенсирующими покрытиями при разной толщине зазора d. Расчет показал, что разброс коэффициента пропускания на разных длинах волн в этом случае равен 2-10%. Расчет оптических характеристик аналогичного устройства без диэлектрических пленок, компенсирующих спектральную неравномерность коэффициентов пропускания и отражения, показал, что в режиме ослабления неравномерность коэффициента пропускания в спектральном интервале 0,4-0,75 мкм может достигать 25%.

Сравнение устройств с компенсирующими покрытиями и без них показывает, что введение компенсирующих покрытий позволяет уменьшить разброс коэффициента пропускания на разных длинах волн до 2-10%.

Дополнительное увеличение равномерности спектральной характеристики регулятора интенсивности излучения достигается также при использовании компенсирующих пленок с дисперсией поглощения. Такие пленки изготовляют из диэлектрического материала с примесью ионов переходных либо редкоземельных металлов, имеющих полосы поглощения на длинноволновой границе видимой области спектра. На Фиг.3, вид 3.1, показана спектральная зависимость коэффициента пропускания УОФ с компенсирующими покрытиями из ZnO толщиной 0,13 мкм, одно из которых имеет дисперсию коэффициента поглощения, показанную на Фиг.3, вид 3.2.

Сравнение коэффициентов неравномерности спектральной характеристики коэффициента пропускания (ΔТ=Tmaxmin) показано на Фиг.4. Из чертежа видно, что использование компенсирующих покрытий в регуляторе интенсивности излучения на основе НПВО позволяет уменьшить неравномерность спектральной характеристики в 2-10 раз.

Заявленная конструкция предназначена для практического использования в таких устройствах, как:

- "умный" оптический переключатель для устройств памяти, оптической записи информации (многоуровневой, небинарной и т.д.);

- оптический анализатор для экранов, мониторов;

- модулятор интенсивности лазерного излучения.

Регулятор интенсивности излучения может быть использован также для защиты фотоприемника или матрицы фотоприемников от повреждения или насыщения интенсивным излучением. Для этого подается электрический сигнал с защищаемого фотоприемного устройства на пьезоэлектрический движитель, управляющий зазором между призмами.

Следует отметить, что описанный вариант реализации заявляемой конструкции не является единственно возможным и допускает различные модификации, ограниченные лишь объемом притязаний, изложенных в формуле изобретения.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 35.
13.02.2018
№218.016.20a6

Дозиметр ультрафиолетового излучения

Изобретение относится к области оптических измерений и касается дозиметра ультрафиолетового излучения. Дозиметр включает в себя последовательно расположенные по ходу распространения излучения средство оптической фильтрации, пропускающее ультрафиолетовое излучение, фотолюминесцентный...
Тип: Изобретение
Номер охранного документа: 0002641509
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.3975

Способ изготовления нанокомпозитов в стекле

Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу,...
Тип: Изобретение
Номер охранного документа: 0002647132
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.437e

Способ определения коррозионного состояния заземляющих устройств

Изобретение относится к контрольно-измерительной технике и может быть использовано для количественной оценки коррозионного состояния элементов заземляющих устройств электроустановок подстанций различного вида и назначения без проведения вскрышных работ. Заявлен способ определения коррозионного...
Тип: Изобретение
Номер охранного документа: 0002649630
Дата охранного документа: 04.04.2018
20.06.2018
№218.016.64d2

Способ записи оптической информации в фототерморефрактивном стекле

Изобретение относится к оптике и фотонике и может быть использовано для записи и длительного, архивного, хранения оптической информации в кодах высших порядков, например в восьмеричной или в шестнадцатеричной системах счисления. В заявленном способе записи оптической информации в...
Тип: Изобретение
Номер охранного документа: 0002658114
Дата охранного документа: 19.06.2018
12.12.2018
№218.016.a57d

Способ записи оптической информации в стекле

Изобретение относится к оптике и фотонике и может быть использовано для записи в стекле оптической информации в цифровом или аналоговом форматах, а также для создания в стекле нано- и микроразмерных источников света. Способ записи оптической информации в стекле, содержащем ионы и заряженные...
Тип: Изобретение
Номер охранного документа: 0002674402
Дата охранного документа: 07.12.2018
11.03.2019
№219.016.db42

Подложка для биочипа и способ ее изготовления

Изобретения относятся к оптике, технологиям обработки оптических материалов и нанотехнологиям. Подложка для биочипа представляет собой стеклянную пластину с наночастицами металла (Au, Ag, Pt). Согласно изобретению пластина выполнена из силикатного фотохромного или фототерморефрактивного стекла...
Тип: Изобретение
Номер охранного документа: 0002411180
Дата охранного документа: 10.02.2011
11.03.2019
№219.016.db72

Способ изготовления спиральной длиннопериодной волоконной решетки

Способ изготовления спиральной длиннопериодной волоконной решетки из заготовки оптического волокна заключается в том, что на заготовку оптического волокна из стекла или полимера наматывают виток к витку полимерное волокно и фиксируют концы наматываемого волокна. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002426158
Дата охранного документа: 10.08.2011
27.04.2019
№219.017.3df2

Способ изготовления длиннопериодной волоконной решетки

Способ может быть использован для изготовления длиннопериодных волоконных решеток, применяемых в волоконно-оптических датчиках и сенсорах. Способ обеспечивает формирование на поверхности стеклянного волокна периодической структуры переменной толщины. Волокно погружают вертикально в раствор...
Тип: Изобретение
Номер охранного документа: 0002398251
Дата охранного документа: 27.08.2010
27.04.2019
№219.017.3df3

Способ изготовления спиральной длиннопериодной волоконной решетки (варианты)

Способ включает скручивание вокруг оси заготовки со скоростью 0,5…1 об/с и одновременно растягивание продольно со скоростью 0,1…1 мм/с. В первом варианте заготовка представляет собой раствор полимера с концентрацией 50…80% и полученное волокно смачивают растворителем полимера в течение 2…15 с и...
Тип: Изобретение
Номер охранного документа: 0002392646
Дата охранного документа: 20.06.2010
27.04.2019
№219.017.3df9

Способ формирования металлических нанокластеров в стекле

Формирование металлических нанокластеров в стекле применяется в интегральной оптике для создания матриц микролинз, плазменных волноводов, оптических переключателей, химических и биосенсоров на основе плазменных наноструктур и метаматериалов. Способ позволяет получать композитные слои с...
Тип: Изобретение
Номер охранного документа: 0002394001
Дата охранного документа: 10.07.2010
+ добавить свой РИД