×
16.02.2019
219.016.bb90

Результат интеллектуальной деятельности: СПОСОБ СКЛЕРОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ МАТЕРИАЛОВ С ЦЕЛЬЮ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МИКРОСТРУКТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002679929
Дата охранного документа
14.02.2019
Аннотация: Изобретение относится к способам сканирования и устройствам, предназначенным для исследований микроструктуры поверхностных слоев металлов и сплавов, но может найти применения и для исследования любых материалов с неоднородной структурой. Сущность: осуществляют сканирование (движение) индентора по поверхности исследуемого материала с постоянной скоростью и при постоянной нагрузке. Движение индентора осуществляют по круговой траектории с помощью барабана, в котором с определенным смещением от центра вращения крепят индентор с алмазным наконечником, причем движение индентора осуществляют так, что точка начала движения индентора совпадает с точкой окончания сканирования, при этом первый цикл вращения барабана используют для очистки трассы сканирования, а измерения начинают с любого из последующих циклов вращения барабана. Устройство содержит электродвигатель, нагрузочное устройство с держателем и индентором, закрепленным на держателе. Электродвигатель закреплен в цилиндрическом корпусе при помощи креплений, выполнен с возможностью передачи вращения вала через понижающий редуктор на барабан, в котором с определенным смещением от центра вращения размещены пружинное нагружающее устройство, индентор с алмазным наконечником и гайка крепления. Технический результат: относительная простота сканирующего устройства, увеличение его надежности, а также повышение точности измерений, возможность получения объемной картины свойств микроструктуры тонких поверхностных слоев, расположенных на различной глубине. 2 н. и 5 з.п. ф-лы, 4 ил.

Данное изобретение предназначено для склерометрических исследований структуры поверхностных слоев сталей и сплавов, относится к способам сканирования и сканирующим устройствам, обеспечивающим перемещение чувствительного стержня с алмазным наконечником (индентора) по поверхности исследуемого материала. Данный способ позволяет осуществлять предварительную автоматическую подготовку поверхности образца путем очистки трассы сканирования от загрязнений и окислов, осуществлять несколько циклов сканирования вдоль одной трассы, измеряя свойства микроструктуры на разной глубине. Изобретение относится к способам сканирования и устройствам, предназначенным для исследований микроструктуры поверхностных слоев металлов и сплавов, но может найти применения и для исследования любых материалов с неоднородной структурой.

Известен способ склерометрических измерений, когда сканирующее устройство обеспечивает прямолинейное перемещение твердосплавной или алмазной иглы (индентора), которая царапает поверхность исследуемого образца

(http://nanoscan.info/metodiki/sklerometriya). Микротвердость поверхностного слоя определяется измерениями под микроскопом ширины царапины, которая может иметь различные значения вдоль трассы сканирования вследствие неоднородности свойств поверхностного слоя. Измеренные значения сравнивают с эталонными. Достоинствами данного метода являются его простота и возможность проводить измерения не в одной точке, а на протяжении всей длины трассы сканирования. Технической проблемой является невысокая точность измерений, поскольку измерения ширины царапины осуществляются вручную, при помощи обычного инструментального микроскопа.

Известен способ определения микротвердости поверхностного слоя путем вдавливания в исследуемый образец алмазной пирамиды (ГОСТ 9450-76) или царапины-канавки (ГОСТ 21318-75, патент RU 2066861). Микротвердость определяют измерением диагонали полученного отпечатка и сравнением его с эталонными значениями. Достоинством данного способа является его простота. Недостатком является невысокая точность измерений, поскольку микротвердость определяется вручную, и только в одной точке. Технической проблемой является то, что для получения более подробной характеристики физических свойств поверхностного слоя необходимо выполнить множество измерений, и рассчитать среднее арифметическое всех измеренных значений.

Наиболее близким аналогом заявленного изобретения является сканирующее устройство для измерения склерометрических характеристик, обеспечивающее сканирование по прямолинейной поверхности, с последующим возвратом индентора (чувствительного элемента) в исходное положение по а.с. СССР SU 352189, опубл.: 21.11.1972 «Прибор для склерометрических исследований материалов». Известный прибор содержит основание, установленные на основании стол, нагрузочное устройство с держателем и индентором, закрепленным на держателе, и микроскоп, расположенный на столе с возможностью перемещения в двух взаимно перпендикулярных направлениях относительно плоскости стола, координатный столик и устройство, регистрирующее усилие царапания, отличающийся тем, что, с целью повышения точности измерения тангенциального усилия, он снабжен бинокулярным микроскопом, установленным на основании соосно с индентором, кареткой с направляющими для опорного стола, закрепленным на направляющих микрометрическим упором, на основании смонтированы направляющие, в которых расположена каретка, стол установлен с возможностью перемещения на величину, равную расстоянию между оптическими осями микроскопов, а регистрирующее устройство выполнено в виде двух пластин с наклеенными тензодатчиками и закреплено на нагрузочном устройстве и держателе индентора.

Достоинством известного метода склерометрии и данного прибора является возможность автоматизации процесса измерений, и возможность исследования сравнительно протяженных участков поверхности, где микротвердость поверхностного слоя определяется не в одной точке, а на протяжении длины трассы сканирования. Технической проблемой прототипа являются необходимость очистки и подготовки поверхности исследуемого образца, и невозможность исследования криволинейных поверхностей, поскольку конструкция такого сканирующего устройства обеспечивает сканирование только вдоль прямой линии.

Общими техническими проблемами всех перечисленных способов являются: высокая трудоемкость очистки и подготовки поверхностей образцов перед исследованиями, невозможность исследований свойств микроструктуры на разных глубинах вдоль одной трассы сканирования, что необходимо, например, для создания объемной картины свойств околоповерхностных слоев исследуемого материала.

Задачей данного изобретения является повышение точности и удобства измерений путем применения принципиально-нового способа автоматической очистки (подготовки) поверхности исследуемого образца вдоль трассы сканирования на поверхности исследуемого образца, и движением чувствительного элемента (индентора) по круговой траектории, в результате которого точка начала движения индентора совпадает с точкой окончания сканирования. Такой способ позволяет уменьшить линейный размер трассы сканирования, необходимой для получения достоверных результатов, поскольку трасса имеет форму кольца малого диаметра и более компактно размещается на поверхности испытуемого образца.

Техническим результатом изобретения является относительная простота сканирующего устройства, увеличение его надежности, а, также, повышение точности измерений, возможность получения объемной картины свойств микроструктуры тонких поверхностных слоев расположенных на различной глубине.

Указанный технический результат достигается за счет того, что заявлен способ склерометрических исследований материалов с целью измерения параметров микроструктуры, осуществляемый методом склерометрии, характеризующийся сканированием (движением) индентора по поверхности исследуемого материала с постоянной скоростью и при постоянной нагрузке, отличающийся тем, что движение индентора осуществляют по круговой траектории с помощью барабана, в котором с определенным смещением от центра вращения крепят индентор с алмазным наконечником, причем движение индентора осуществляют так, что точка начала движения индентора совпадает с точкой окончания сканирования, при этом первый цикл вращения барабана используют для очистки трассы сканирования, а измерения начинают с любого из последующих циклов вращения барабана.

Предпочтительно, колебания звуковой частоты, образующиеся при движении острой грани алмаза при царапании поверхности образца в зоне контакта, преобразуют в аналоговый электрический сигнал акустическим датчиком и передают в компьютер для обработки и анализа.

Предпочтительно, постоянную нагрузку индентора обеспечивают тем, что в процессе измерений под действием пружины индентор прижимают к поверхности исследуемого образца.

При исследованиях немагнитных материалов применяют механические крепежные устройства, обеспечивающие фиксацию сканирующего устройства на поверхности исследуемого образца.

При каждом последующем обороте барабана и углублении индентора в поверхность образца, получают характеристики о структуре слоев материала, расположенных на различной глубине, по которым формируют объемную картину изменения свойств микроструктуры материалов вдоль одной трассы сканирования.

Также заявлено устройство для склерометрических исследований материалов, содержащее электродвигатель, нагрузочное устройство с держателем и индентором, закрепленным на держателе, отличающееся тем, что электродвигатель закреплен в цилиндрическом корпусе при помощи креплений, выполненный с возможностью передачи вращения вала через понижающий редуктор на барабан, в котором с определенным смещением от центра вращения размещены: пружинное нагружающее устройство, индентор с алмазным наконечником и гайка крепления. Предпочтительно, к корпусу прикреплены магниты. Краткое описание чертежей.

На Фиг. 1 показано сканирующее устройство для осуществления нового способа многократного сканирования по круговой траектории, где 1 - электродвигатель, 2 - цилиндрический корпус сканирующего устройства, выполненный в виде трубы, 3 - крепления электродвигателя к корпусу, 4 - понижающий редуктор электродвигателя, 5 - барабан вращения индентора, 6 - пружинный механизм нагружения индентора, 7 - индентор, выполненный в виде заостренного цилиндра с алмазным наконечником, 8 - гайка крепления индентора, 9 - поверхность исследуемого образца, 10 - магниты, обеспечивающие фиксацию сканирующего устройства на поверхности металлического образца, 11 - акустический датчик, 12 - круговая трасса сканирования.

На Фиг. 2 показан внешний вид основных деталей сканирующего устройства, где 1 - электродвигатель, 2 - цилиндрический корпус сканирующего устройства, выполненный в виде трубы, 3 - отверстия для крепления электродвигателя к корпусу, 4 - понижающий редуктор электродвигателя, 5 - барабан вращения индентора, 6 - пружинный механизм нагружения индентора, 7 - индентор, выполненный в виде заостренного цилиндра с алмазным наконечником, 8 - гайка крепления индентора, 11 - место крепления акустического датчика.

На Фиг. 3 показаны основные детали сканирующего устройства при виде спереди.

На Фиг. 4 показан внешний вид барабана с индентором в корпусе сканирующего устройства в собранном виде.

Осуществление изобретения

Для получения информации о структуре поверхностного слоя методом склерометрии осуществляется сканирование (движение) цилиндра с алмазным наконечником 8 (показанным на Фиг. 1 и Фиг. 2) по поверхности исследуемого материала 9. Движение осуществляется с постоянной скоростью и при постоянной нагрузке. При движении острая грань алмаза царапает поверхность образца, в зоне контакта происходят колебания звуковой частоты, которые преобразуются в аналоговый электрический сигнал акустическим датчиком 11, и передаются в компьютер для обработки и анализа. Для осуществления сканирования по круговой траектории используется устройство, схема которого показана на Фиг. 1, а внешний вид деталей показан на Фиг. 2, 3, 4. При этом нумерация, обозначающая детали устройства на Фиг. 1 и Фиг. 2 совпадают. Сканирующее устройство работает следующим образом: Электродвигатель 1, укрепленный в цилиндрическом корпусе 2 при помощи креплений 3, передает вращение вала через понижающий редуктор 4 на барабан 5, в котором с определенным смещением от центра вращения размещены: пружинное нагружающее устройство 6, индентор с алмазным наконечником 7, и гайка крепления 8. Под действием пружины 6 индентор 7 прижимается к поверхности исследуемого образца 9. Для быстрого крепления сканирующего устройства к поверхностям металлов и сплавов к его корпусу прикреплены магниты 10. При исследованиях немагнитных материалов необходимо применения механических крепежных устройств, обеспечивающих фиксацию сканирующего устройства на поверхности исследуемого образца. При вращении барабана 5 алмазный наконечник индентора 7 описывает (царапает) на поверхности исследуемого образца 9 круговую трассу 12 с малым радиусом R. Поскольку достаточно протяженная трасса сканирования свернута в круг малого радиуса, данное устройство позволяет сканировать не только плоские поверхности образцов, но и поверхности, имеющие определенную кривизну.

Принципиально новый способ сканирования состоит из нескольких последовательных этапов. Сканирующее устройство крепится на поверхности исследуемого материала 9 (Фиг. 1) при помощи магнитов или механического механизма крепления типа струбцины. Вращение барабана 7 осуществляется циклами, где каждый цикл - это один полный оборот вокруг оси вращения. Важным достоинством данного способа сканирования является то, что перед началом сканирования не требуется какой либо подготовки поверхности, кроме простой очистки от крупных загрязнений. Первый цикл вращения барабана осуществляется без измерений и предназначен для очистки трассы сканирования. В первом (очищающем) цикле вращения барабана 5 (Фиг. 1) алмазный наконечник индентора 7 работает в качестве резца, срезающего загрязнения и выравнивающего поверхность по всей круговой трассе сканирования. Благодаря выравнивающему эффекту первого цикла, исследования можно проводить на загрязненных и шероховатых поверхностях, которые могут иметь определенную кривизну. Во время второго цикла вращения осуществляются склерометрические измерения структуры поверхностного слоя вдоль очищенной трассы сканирования. При этом точность измерений будет очень высокой потому, что трасса сканирования имеет идеально чистую поверхность, которая не успела окислиться или загрязниться, поскольку второй цикл сканирования (процесс измерений) осуществляется сразу после очистки поверхностного слоя от загрязнений при первом обороте барабана. Переход от предыдущего цикла к последующему может осуществляться без остановки барабана 5 (Фиг. 1), путем простого включения и выключения акустического датчика 11.

Данный способ сканирования позволяет не только автоматически очищать трассу сканирования, но и выполнять склерометрические исследования структуры, расположенной на различной глубине поверхностных слоев. После первого цикла вращения барабана 5 (очистки трассы 12) осуществляется второй цикл вращения, при котором измеряются склерометрические характеристики структуры первого слоя. При этом алмазный наконечник, как резец, срезает миниатюрный слой вдоль трассы сканирования. При каждом проходе (цикле) трасса сканирования становится глубже. Поэтому при третьем цикле вращения барабана 5 индентор 7 будет двигаться в более глубоком поверхностном слое образца 9 (Фиг. 1). Таким образом, при третьем обороте (цикле) барабана 5 будут измерены склерометрические характеристики более глубокого поверхностного слоя образца. При каждом последующем обороте барабана 5 индентор 7 будет все больше углубляться в поверхность образца 9, получая характеристики о структуре слоев материала, расположенных на различной глубине. Уникальность данного способа в том, что он впервые позволяет получить объемную картину изменения свойств микроструктуры материалов вдоль одной трассы сканирования.

В данном изобретении использованы четыре принципиально-новые технические решения:

- предложен новый более эффективный и простой способ подготовки и очистки поверхности исследуемого образца вдоль трассы сканирования, когда очистка и выравнивание трассы осуществляется острием индентора, движущегося по круговой траектории;

- предложен способ циклического сканирования по круговой траектории, что позволяет уменьшить габариты площадки поверхности образца, необходимой для исследований за счет сворачивания линии сканирования в круг малого диаметра;

- сканирование по круговой траектории позволяет исследовать слои материала, расположенные на разной глубине, поскольку при каждом цикле сканирования индентор опускается глубже в слой поверхности исследуемого материала; это впервые дает уникальную возможность получать картину изменения свойств структуры по глубине поверхностных слоев вдоль одной трассы сканирования;

- для осуществления нового многоэтапного способа кругового сканирования используется надежное устройство, конструкция которого состоит из простых деталей. Поскольку перед измерениями не требуется специальной подготовки и очистки поверхности исследуемого образца, так как очистка и выравнивание трассы сканирования осуществляется острым алмазным наконечником индентора при первом обороте барабана сканирующего устройства, это позволяет снизить трудоемкость процесса подготовки образца.

Техническим результатом изобретения является относительная простота сканирующего устройства, увеличение его надежности, а, также, повышение точности измерений за счет применения принципиально-нового способа подготовки поверхности образца и нового способа осуществления измерений, которые могут осуществляться не только в одном поверхностном слое, но и в нескольких слоях на различной глубине вдоль единой круговой трассы сканирования. То есть, при использовании данного изобретения возможно получение объемной картины свойств микроструктуры тонких поверхностных слоев расположенных на различной глубине.

Способ позволяет уменьшить линейный размер трассы сканирования, необходимой для получения достоверных результатов, поскольку трасса имеет форму кольца малого диаметра и более компактно размещается на поверхности испытуемого образца. Использование круговой трассы сканирования вместо линейной позволяет исследовать образцы с криволинейной поверхностью, за счет уменьшения площадки поверхности, необходимой для измерений. Данный способ реализован в виде миниатюрного сканирующего устройства цилиндрической формы. Такое устройство имеет сравнительно простую конструкцию, несложно в изготовлении, и долговечно в работе за счет минимального числа трущихся поверхностей и отсутствия шарнирных соединений, которые имеются в конструкциях устройств для линейного сканирования.


СПОСОБ СКЛЕРОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ МАТЕРИАЛОВ С ЦЕЛЬЮ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МИКРОСТРУКТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ СКЛЕРОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ МАТЕРИАЛОВ С ЦЕЛЬЮ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МИКРОСТРУКТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ СКЛЕРОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ МАТЕРИАЛОВ С ЦЕЛЬЮ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МИКРОСТРУКТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ СКЛЕРОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ МАТЕРИАЛОВ С ЦЕЛЬЮ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МИКРОСТРУКТУРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 436.
10.03.2014
№216.012.a928

Устройство защиты аппаратуры и линейно-кабельных сооружений проводной связи на железнодорожном транспорте

Изобретение относится к устройствам защиты кабельных цепей железнодорожной связи. Устройство защиты аппаратуры и линейно-кабельных сооружений проводной связи на железнодорожном транспорте содержит блоки защиты, включающие подключенные к кабелю связи модуль первой ступени защиты и модуль второй...
Тип: Изобретение
Номер охранного документа: 0002509019
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.abb4

Устройство для постановки на путь и перемещения сошедшего с рельсов подвижного состава

Изобретение относится к железнодорожному транспорту. Устройство для постановки на путь и перемещения сошедшего с рельсов подвижного состава (4) содержит накаточные башмаки (1), тяговое устройство в виде лебедки (3). На рельсе (2) закреплено фиксирующее приспособление (5). Лебедка (3) связана с...
Тип: Изобретение
Номер охранного документа: 0002509671
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.aeae

Способ нанесения антифрикционных покрытий на боковую поверхность рельса

Изобретение относится к области нанесения антифрикционных покрытий преимущественно на боковую поверхность рельсов железнодорожных путей и может быть также использовано в узлах трения различных машин. Осуществляют предварительное нанесение на поверхность металла шероховатого слоя толщиной от...
Тип: Изобретение
Номер охранного документа: 0002510433
Дата охранного документа: 27.03.2014
20.04.2014
№216.012.b9fa

Способ оценки состояния рельсового пути

Изобретение относится к железнодорожному транспорту. Способ оценки состояния рельсового пути заключается в том, что с применением диагностического вагона, оборудованного тензометрическими колесными парами, тензометрическими автосцепками, измерительными приборами, системами спутниковой навигации...
Тип: Изобретение
Номер охранного документа: 0002513338
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.b9fb

Устройство скрепления (соединения) рельсовых плетей "скрепка"

Изобретение относится к железнодорожному транспорту и может быть использовано при выполнении работ по укладке бесстыкового железнодорожного пути. Устройство скрепления (соединения) рельсовых плетей в положение перетяжки «Скрепка» выполнено в виде грузовой траверсы с приваренным двухсторонним...
Тип: Изобретение
Номер охранного документа: 0002513339
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.b9fc

Путевой энергопоглощающий упор (варианты)

Путевой энергопоглощающий упор содержит трубчатое энергопоглощающее устройство (1), одним концом закрепленное на неподвижной опоре (2), а на другом - снабженное ударным оголовком (3) с рабочими поверхностями на его торце, выполненными в виде двух не контактирующих друг с другом выступов, часть...
Тип: Изобретение
Номер охранного документа: 0002513340
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.b9fd

Способ автоматической локомотивной сигнализации непрерывного типа и устройство автоматической локомотивной сигнализации непрерывного типа

Группа изобретений относится к железнодорожной автоматике, телемеханике и связи. В способе автоматической локомотивной сигнализации непрерывного типа дешифрируют кодовые сигналы, поступающие на подвижную единицу по рельсовым цепям, и при отсутствии сигнала прекращают дешифрацию сигналов. Далее...
Тип: Изобретение
Номер охранного документа: 0002513341
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bc1b

Система интервального регулирования движения поездов на перегоне

Изобретение относится к области интервального регулирования движения поездов. Система интервального регулирования движения поездов на перегоне содержит блок-участки с рельсовыми цепями и проходными светофорами. Устройства сопряжения приемных концов рельсовых цепей соединены с приемниками...
Тип: Изобретение
Номер охранного документа: 0002513883
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c012

Пластичная смазка

Настоящее изобретение относится к пластичной смазке на основе минеральных масел или их смесей, содержащих высокодисперсные наполнители, при этом она подвергнута модификации наночастицами железа, образующегося после перемешивания в реакторе со скоростной мешалкой от 1000 до 2500 об/мин с жидким...
Тип: Изобретение
Номер охранного документа: 0002514919
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c78d

Электропривод стрелочный быстродействующий

Изобретение относится к стрелочным электроприводам. Стрелочный электропривод содержит смонтированные в общем металлическом корпусе электродвигатель, на роторе которого с нерабочей стороны установлена электромагнитная муфта-тормоз, а на выходной конец вала ротора электродвигателя с рабочей...
Тип: Изобретение
Номер охранного документа: 0002516844
Дата охранного документа: 20.05.2014
Показаны записи 1-4 из 4.
10.03.2015
№216.013.310b

Система спасения космического аппарата

Изобретение относится к ракетно-космической технике и может быть использовано для спасения космических аппаратов в случае возникновения внештатных ситуаций. Система аварийного спасения содержит двигатели разгонного блока, пиротехническую катапультирующую систему отделения от рабочих ступеней...
Тип: Изобретение
Номер охранного документа: 0002544023
Дата охранного документа: 10.03.2015
20.05.2015
№216.013.4cd3

Способ получения дополнительного импульса тяги ракеты и межступенчатый ускоритель для его осуществления (варианты)

Изобретение относится к ракетной технике и может быть использовано для получения дополнительного импульса тяги. Межступенчатый ракетный ускоритель содержит стволы с пиропатронами с электродетонаторами, штоками-толкателями с амортизаторами с функцией смягчения удара при срабатывании пиропатрона,...
Тип: Изобретение
Номер охранного документа: 0002551181
Дата охранного документа: 20.05.2015
10.04.2019
№219.016.ff2f

Способ обеспечения чистоты головного блока в составе ракеты космического назначения и устройство для осуществления способа

Изобретения относятся к средствам, преимущественно наземным, управления параметрами окружающей среды изделий ракетно-космической техники. Предлагаемый способ включает подачу газового компонента в верхнюю часть головного блока (ГБ) и его выброс из нижней его части. При этом в ГБ создают...
Тип: Изобретение
Номер охранного документа: 0002279375
Дата охранного документа: 10.07.2006
10.04.2019
№219.016.ff57

Способ обеспечения теплового режима и чистоты головного блока в составе ракеты космического назначения и устройство для осуществления способа

Изобретения относятся к средствам, преимущественно наземным, управления параметрами окружающей среды изделий ракетно-космической техники. Предлагаемый способ включает подачу газового компонента в верхнюю часть головного блока (ГБ) и его выброс из нижней его части. При этом в ГБ создают...
Тип: Изобретение
Номер охранного документа: 0002276651
Дата охранного документа: 20.05.2006
+ добавить свой РИД