×
16.02.2019
219.016.bb79

Результат интеллектуальной деятельности: Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в повышении стабильности статического режима при отрицательных температурах и изменении напряжений питания, также обеспечивается возможность изменения численных значений напряжения ограничения проходной характеристики при фиксированном токопотреблении. Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики содержит первый (1) вход входного полевого транзистора (2), второй (3) вход входного полевого транзистора (4), первый (5) токовый выход, первую (6) шину источника питания, второй (7) токовый выход, первый (8) вспомогательный полевой транзистор, третий (9) токовый выход, вторую (10) шину источника питания, второй (11) вспомогательный полевой транзистор, четвертый (12) токовый выход, причем каналы первого (2) и второго (4) входных полевых транзисторов имеют первый тип проводимости, а каналы первого (8) и второго (11) вспомогательных полевых транзисторов имеют другой тип проводимости. Дифференциальный усилитель также включает первый (13), второй (14), третий (15), четвертый (16) и пятый (17) дополнительные резисторы. 8 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в т.ч. работающих при низких температурах и воздействии радиации.

Известны схемы классических дифференциальных усилителей (ДУ) на комплементарных транзисторах [1-61], в т.ч. на комплементарных биполярных транзисторах [1-32], на комплементарных КМОП полевых транзисторах [33-61] и комплементарных полевых транзисторах с управляющим p-n переходом (JFet) [4], которые стали основой многих серийных аналоговых микросхем. В литературе по аналоговой микроэлектронике этот класс ДУ имеет специальное обозначение – dual-input-stage [62].

Для работы при низких температурах при жестких ограничениях на уровень шумов перспективно использование JFet полевых транзисторов [63-67]. ДУ данного класса активно применяются в структуре малошумящих аналоговых интерфейсов для обработки сигналов датчиков [68-70].

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный усилитель, описанный в патенте US 5.291.149, fig.4, 1994г., который содержит первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости (например, n-канал), а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости (р-канал).

Существенный недостаток известного ДУ фиг. 1 состоит, во-первых, в том, что его статический режим определяется двумя источниками опорного тока I1 (I2), которые, как правило, неидентичны, что становится источником дополнительных погрешностей усиления малых сигналов. Во-вторых, в известном ДУ при фиксированном токе потребления затруднено изменение напряжения ограничения Uгр проходной характеристики iвых=f(uвх), которое оказывает существенное влияние на максимальную скорость нарастания выходного напряжения (SR) операционного усилителя с входным ДУ фиг. 1 [71-72]

где f1 – частота единичного усиления скорректированного ОУ с входным ДУ фиг. 1, как правило, не зависящая от Uгр.

Это не позволяет управлять численными значениями SR в конкретных схемах ОУ при заданных ограничениях на токопотребление, запас устойчивости по фазе, коэффициент усиления по напряжению и т.п.

Основная задача предполагаемого изобретения состоит в создании условий, при которых в ДУ фиг. 1 обеспечивается:

- более высокая стабильность статического режима ДУ при отрицательных температурах (до -197°С) и изменении напряжений питания;

- возможность изменения напряжения ограничения проходной характеристики Uгр по усмотрению разработчика (в зависимости от заданных значений SR [71-72]) при фиксированном токопотреблении.

Поставленная задача решается тем, что в дифференциальном усилителе фиг. 1, содержащем первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости, предусмотрены новые элементы и связи – между истоками первого 2 и второго 4 входных полевых транзисторов включены два последовательно соединенных первый 13 и второй 14 дополнительные резисторы, между истоками первого 8 и второго 11 вспомогательных полевых транзисторов включен третий 15 дополнительный резистор, между истоками первого 2 входного полевого и первого 8 вспомогательного полевого транзисторов включен четвертый 16 дополнительный резистор, между истоками второго 4 входного полевого и второго 11 вспомогательного полевого транзисторов включен пятый 17 дополнительный резистор, причем объединенные затворы первого 8 и второго 11 вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого 13 и второго 14 дополнительных резисторов.

На чертеже фиг. 1 представлена схема ДУ-прототипа, а на чертеже фиг. 2 – схема заявляемого устройства в соответствии с формулой изобретения.

На чертеже фиг. 3 в среде LTspice показан статический режим ДУ фиг. 2 при температуре -197°С для случая, когда сопротивление третьего 15 дополнительного резистора (фиг. 2) значительно превышает сопротивление четвертого 16 и пятого 17 дополнительных резисторов.

На чертеже фиг. 4 приведены проходные характеристики ДУ фиг. 3 iвых=f(uвх), при температуре -197°С и разных сопротивлениях R3*=R4*=100/1к/10к/100кОм: Iout1,V3=Vin=-3÷3В (а), Iout2,V3=Vin=-3÷3В (б), Iout3,V3=Vin=-3÷3В (в), Iout4,V3=Vin=-3÷3В (г).

На чертеже фиг. 5 представлена зависимость Uгр для первого 5 токового выхода out.1 ДУ фиг. 3 от сопротивлений резисторов R3*=R4* при различных температурах.

На чертеже фиг. 6 показаны проходные характеристики ДУ фиг. 3 для первого 5 токового выхода out.1 (ДУ фиг. 2) при разных сопротивлениях дополнительных резисторов R3*=R4*=100/1к/10к/100кОм и температуре -197°С.

На чертеже фиг. 7 в среде LTspice приведен статический режим ДУ фиг. 2 при температуре -197°С для случая, когда сопротивления первого 13 и второго 14 дополнительных резисторов (фиг.2) значительно превышают сопротивления четвертого 16 и пятого 17 дополнительных резисторов.

На чертеже фиг. 8 представлены проходные характеристики ДУ фиг. 3 при R3*=R4*=100кОм и разных сопротивлениях дополнительного резистора R5*=Rvar=100/1к/10к/100кОм: Iout1,V3=Vin=-5÷5В при -197°С (а), Iout3,V3=Vin=-5÷5В при -197°С (б).

Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики фиг. 2 содержит первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости. Между истоками первого 2 и второго 4 входных полевых транзисторов включены два последовательно соединенных первый 13 и второй 14 дополнительные резисторы, между истоками первого 8 и второго 11 вспомогательных полевых транзисторов включен третий 15 дополнительный резистор, между истоками первого 2 входного полевого и первого 8 вспомогательного полевого транзисторов включен четвертый 16 дополнительный резистор, между истоками второго 4 входного полевого и второго 11 вспомогательного полевого транзисторов включен пятый 17 дополнительный резистор, причем объединенные затворы первого 8 и второго 11 вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого 13 и второго 14 дополнительных резисторов.

На чертеже фиг. 2 свойства нагрузок для первого 5, второго 7, третьего 9 и четвертого 12 токовых выходов моделируются соответственно двухполюсниками 18, 19, 20 и 21. В практических схемах эти двухполюсники – входные сопротивления токовых зеркал, на которых реализуется схема того или иного операционного усилителя или компаратора.

Рассмотрим работу ДУ фиг. 2.

В статическом режиме, например, при подключении первого 1 и второго 3 входов ДУ фиг. 2 к общей шине источников питания (6 и 10), первый 13, второй 14 и третий 15 дополнительные резисторы не влияют на статические токи истока всех полевых транзисторов схемы из-за ее симметрии. При этом

где Iиi – ток стока i-го полевого транзистора;

Uзи.8, Uзи.11 – напряжение затвор-исток соответствующих первого 8 и второго 11 вспомогательных полевых транзисторов в рабочей точке при токе истока, равном I0;

UR16=UR17 – падение напряжения на четвертом 16 и пятом 17 дополнительных резисторах от тока I0.

Таким образом, за счет выбора четвертого 16 и пятого 17 дополнительных резисторов обеспечивается идентичный заданный статический режим по току всех полевых транзисторов 2, 4, 8, 11 ДУ фиг. 2:

Следует заметить, что статический режим ДУ фиг. 2 практически не зависит от величины входного синфазного сигнала и изменений напряжений питания на первой 6 и второй 10 шинах. Это позволяет исключить из схемы ДУ фиг. 2 традиционные источники опорного тока, отрицательно влияющие на данные параметры.

Если на вход 1 подается положительное входное напряжение uвх относительно входа 3, то это вызывает увеличение тока через первый 13 и второй 14 дополнительные резисторы и уменьшение тока истока второго 4 входного полевого транзистора. В пределе ток истока первого 2 входного полевого транзистора может принимать удвоенное значение относительно своего статического уровня при uвх=0. Численные значения сопротивлений первого 13 и второго 14 дополнительных резисторов определяют напряжение ограничения проходной характеристики ДК фиг. 2: чем больше сопротивления дополнительных резисторов R13=R14, тем при большем входном напряжении uвх=Uгр произойдет ограничение выходного тока ДУ для первого 5 токового выхода. Об этом свидетельствуют графики фиг. 4, фиг. 5, фиг. 6, полученные для схемы фиг. 3.

Аналогичным образом на напряжение ограничения Uгр ДУ фиг. 7 влияет третий 15 дополнительный резистор (фиг. 8). Чем меньше его сопротивление, тем при меньших значениях входного напряжения uвх=Uгр произойдет ограничение выходного тока ДУ фиг. 2 для четвертого 12 токового выхода.

Таким образом, первый 13, второй 14 и третий 15 дополнительные резисторы определяют численные значения напряжения ограничения Uгр предлагаемого дифференциального усилителя для всех его токовых выходов 5, 7, 9, 12.

Графики, представленные на чертежах фиг. 4, фиг. 5, фиг. 6, фиг. 8, снятые при разных температурах и численных значениях сопротивлений первого 13, второго 14 и третьего 15 дополнительных резисторов подтверждают сделанные выше качественные выводы.

Результаты компьютерного моделирования в среде LTspice схем фиг. 3 и фиг. 7 показывают, что на основе предлагаемого ДУ фиг. 2 реализуется широкий спектр проходных характеристик с разными численными значениями напряжения ограничения Uгр для первого 5 и второго 7 токовых выходов, согласованных с первой 6 шиной источника питания, и третьего 9 и четвертого 12 токовых выходов, согласованных со второй 10 шиной источника питания. В итоге, это позволяет проектировать дифференциальные и мультидифференциальные операционные усилители с заданным (см. формулу (1)) быстродействием [71-72].

Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с известными схемотехническими решениями ДУ класса dual-input-stage [1-61], что позволяет рекомендовать его для практического использования в ОУ и построения низкотемпературных и радиационно-стойких аналоговых микросхем по техпроцессу CJFet ОАО «Интеграл» (г. Минск), а также комплементарному биполярно-полевому технологическому процессу АО «НПП «Пульсар» (г. Москва).

Библиографический список

1. Патент US 5.814.953, 1995 г.

2. Патент US 5.225.791, 1993 г.

3. Патент US 6.844.781, 2005 г.

4. Патент US 5.291.149, 1994 г.

5. Патентная заявка US 2005/0024140, 2005 г.

6. Патентная заявка US 2006/0226908, 2006 г.

7. Патент US 4.636.743, 1985 г.

8. Патент SU 1220105, 1986 г.

9. Патент US 5.515.005, 1994 г.

10. Патент US 5.374.897, 1994 г.

11. Патент US 5.512.859, 1996 г.

12. Патент US 4.649.352, 1987 г.

13. Патент JP 8222972, 1996 г.

14. Патент US 6.268.769, 2001 г.

15. Патент RU 2193273, 2002 г.

16. Патент US 4.241.315, 1980 г.

17. Патент JP 2004129018, 2004 г.

18. Патент SU 530425, 1976 г.

19. Патент US 5.153.529, 1992 г.

20. Патент US 5.420.540, 1995 г.

21. Патент US 6.222.416, fig. 2, 2001 г.

22. Патент US 3.974.455, fig. 7, 1976 г.

23. Патент US 4.349.786, 1982 г.

24. Патент US 4.783.637, 1988 г.

25. Патент US 5.293.136, 1994 г.

26. Патент US 6.366.170, 2002 г.

27. Патент US 6.163.290, 2000 г.

28. Патент US 4.417.292, fig. 1, 1981 г.

29. Патент SU 1385255, 1988 г.

30. Патент US 2005/0285677, 2005 г.

31. Патент US 5.610.547, fig. 28, 1997 г.

32. Патент SU 459780, 1975 г.

33. Патентная заявка US 2003/0206060, 2003 г.

34. Патент US 6.794.940, 2004 г.

35. Патентная заявка US 2004/0174216, 2004 г.

36. Патентная заявка US 2006/0125522, 2006 г.

37. Патент US 6.433.637, 2002 г.

38. Патентная заявка US 2007/0159248, 2007 г.

39. Патент US 5.714.906, 1995 г.

40. Патент US 7.907.011, 2011 г.

41. Патент US 6.100.762, 2000 г.

42. Патент US 5.909.146, 1999 г.

43. Патент ЕР 1150423, 2001 г.

44. Патент JP 2004/222104, 2004 г.

45. Патент US 6.801.087, 2004 г.

46. Патент US 5.917.378, 1999 г.

47. Патентная заявка US 2008/0074405, 2008 г.

48. Патентная заявка US 2009/0206930, 2009 г.

49. Патент US 6.356.153, 2002 г.

50. Патент US 5.621.357, 1997 г.

51. Патент US 6.970.043, 2005 г.

52. Патент US 6.731.169, 2004 г.

53. Патент US 5.070.306, fig. 3, 1991 г.

54. Патент US 2010/001797, 2001 г.

55. Патент US 5.610.547, fig. 34, 1997 г.

56. Патент US 6.972.623, fig. 4, fig. 6, 2005 г.

57. Патент US 2008/0238546, fig. 2, 2008 г.

58. Патент US 2008/0252374, 2008 г.

59. Патент US 7.567.124, 2009 г.

60. Патент US 7.586.373, 2009 г.

61. Патент US 2006/0215787, 2006 г.

62. N. N. Prokopenko, N. V. Butyrlagin, A. V. Bugakova and A. A. Ignashin, "Method for speeding the micropower CMOS operational amplifiers with dual-input-stages," 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, 2017, pp. 78-81.

63. The Radiation-Hardened BiJFet Differential Amplifiers with Negative Current Feedback on the Common-Mode Signal / N. N. Prokopenko, O. V. Dvornikov, N. V. Butyrlagin, A. V. Bugakova // 2016 13th International conference on actual problems of electronic instrument engineering (APEIE – 2016) – 39281. Proceedings; Novosibirsk, October 3-6, 2016. In 12 Vol. Vol. 1. Part 1. Pp. 104-108 DOI: 10.1109/APEIE.2016.7802224.

64. K. O. Petrosyants, M. R. Ismail-zade, L. M. Sambursky, O. V. Dvornikov, B. G. Lvov and I. A. Kharitonov, "Automation of parameter extraction procedure for Si JFET SPICE model in the −200…+110°C temperature range," 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, 2018, pp. 1-5. DOI: 10.1109/MWENT.2018.8337212

65. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 2 / О. Дворников, В. Чеховский, В. Дятлов, Н. Прокопенко // Современная электроника, 2015, № 5. С. 24-28

66. O. V. Dvornikov, N. N. Prokopenko, N. V. Butyrlagin and I. V. Pakhomov, "The differential and differential difference operational amplifiers of sensor systems based on bipolar-field technological process AGAMC," 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-6. DOI: 10.1109/SIBCON.2016.7491792

67. O. V. Dvornikov, N. N. Prokopenko, I. V. Pakhomov and A. V. Bugakova, "The analog array chip AC-1.3 for the tasks of tool engineering in conditions of cryogenic temperature, neutron flux and cumulative radiation dose effects," 2016 IEEE East-West Design & Test Symposium (EWDTS), Yerevan, 2016, pp. 1-4. DOI: 10.1109/EWDTS.2016.7807724

68. Дворников О.В., Чеховский В.А., Дятлов В.Л., Прокопенко Н.Н. "Малошумящий электронный модуль обработки сигналов лавинных фотодиодов" Приборы и методы измерений, no. 2 (7), 2013, pp. 42-46.

69. Дворников О. Чеховский В., Дятлов В., Прокопенко Н. Применение структурных кристаллов для создания интерфейсов датчиков //Современная электроника. – 2014. – №. 1. – С. 32-37.

70. O. V. Dvornikov, A. V. Bugakova, N. N. Prokopenko, V. L. Dziatlau and I. V. Pakhomov, "The microcircuits MH2XA010-02/03 for signal processing of optoelectronic sensors," 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, 2017, pp. 396-402. DOI: 10.1109/EDM.2017.7981781

71. Операционные усилители с непосредственной связью каскадов: монография / Анисимов В.И., Капитонов М.В., Прокопенко Н.Н., Соколов Ю.М. - Л.: «Энергия», 1979. - 148 с.

72. Прокопенко, Н.Н. Архитектура и схемотехника быстродействующих операционных усилителей: монография / Н.Н. Прокопенко, А.С. Будяков. – Шахты: Изд-во ЮРГУЭС, 2006. – 231 с.

Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики, содержащий первый (1) вход, соединенный с затвором первого (2) входного полевого транзистора, второй (3) вход, соединенный с затвором второго (4) входного полевого транзистора, первый (5) токовый выход, соединенный со стоком первого (2) входного полевого транзистора и согласованный с первой (6) шиной источника питания, второй (7) токовый выход, соединенный со стоком второго (4) входного полевого транзистора и согласованный с первой (6) шиной источника питания, первый (8) вспомогательный полевой транзистор, сток которого соединен с третьим (9) токовым выходом и согласован со второй (10) шиной источника питания, второй (11) вспомогательный полевой транзистор, сток которого соединен с четвертым (12) токовым выходом и согласован со второй (10) шиной источника питания, причем каналы первого (2) и второго (4) входных полевых транзисторов имеют первый тип проводимости, а каналы первого (8) и второго (11) вспомогательных полевых транзисторов имеют другой тип проводимости, отличающийся тем, что между истоками первого (2) и второго (4) входных полевых транзисторов включены два последовательно соединенных первый (13) и второй (14) дополнительные резисторы, между истоками первого (8) и второго (11) вспомогательных полевых транзисторов включен третий (15) дополнительный резистор, между истоками первого (2) входного полевого и первого (8) вспомогательного полевого транзисторов включен четвертый (16) дополнительный резистор, между истоками второго (4) входного полевого и второго (11) вспомогательного полевого транзисторов включен пятый (17) дополнительный резистор, причем объединенные затворы первого (8) и второго (11) вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого (13) и второго (14) дополнительных резисторов.
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Источник поступления информации: Роспатент

Показаны записи 81-90 из 186.
12.04.2019
№219.017.0b7f

Буферный усилитель на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве двухтактных буферных и выходных усилителей мощности различных аналоговых устройств (операционных усилителей, драйверов линий связи и т.п.), допускающих работу в условиях воздействия проникающей...
Тип: Изобретение
Номер охранного документа: 0002684489
Дата охранного документа: 09.04.2019
12.04.2019
№219.017.0bd4

Быстродействующий дифференциальный операционный усилитель с дифференцирующими цепями коррекции

Изобретение относится к дифференциальным операционным усилителям. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения без ухудшения энергетических параметров. Дифференциальный операционный усилитель содержит входной дифференциальный каскад с...
Тип: Изобретение
Номер охранного документа: 0002684500
Дата охранного документа: 09.04.2019
12.04.2019
№219.017.0c0b

Дифференциальный каскад на комплементарных полевых транзисторах

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в...
Тип: Изобретение
Номер охранного документа: 0002684473
Дата охранного документа: 09.04.2019
13.04.2019
№219.017.0c2b

Система отопления и вентиляции помещения путем утилизации отработанных дымовых газов котельной с независимой системой регулирования температуры

Изобретение относится к дисциплине энергосбережениия и может быть использовано для отопления и вентиляции жилых помещений, помещений с временным пребыванием людей и нежилых помещений. Технической задачей изобретения является создание системы отопления и вентиляции помещения с использованием...
Тип: Изобретение
Номер охранного документа: 0002684678
Дата охранного документа: 11.04.2019
27.04.2019
№219.017.3cdf

Фотоэлектрический способ определения средней концентрации и среднего размера частиц пыли

Изобретение относится к измерительной технике. Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока,...
Тип: Изобретение
Номер охранного документа: 0002686401
Дата охранного документа: 25.04.2019
10.05.2019
№219.017.514b

Буферный усилитель для работы при низких температурах

Изобретение относится к вычислительной технике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения буферного усилителя. Буферный усилитель для работы при низких температурах содержит вход и выход устройства, неинвертирующий...
Тип: Изобретение
Номер охранного документа: 0002687161
Дата охранного документа: 07.05.2019
29.05.2019
№219.017.6296

Полосовой arc-фильтр на двух операционных усилителях с понижением частоты полюса и независимой подстройкой основных параметров

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для ограничения спектра источника сигнала. Техническим результатом изобретения является создание схемы полосового АRC-фильтра с понижением частоты полюса, которая обеспечивает независимую подстройку...
Тип: Изобретение
Номер охранного документа: 0002688237
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.62c0

Дифференциальный усилитель на комплементарных полевых транзисторах с управляющим p-n переходом

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в повышении стабильности статического режима входных полевых транзисторов при отрицательных температурах, возможности изменения...
Тип: Изобретение
Номер охранного документа: 0002688225
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.62d9

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в аналоговых интерфейсах и устройствах преобразования сигналов. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения ДОУ. Быстродействующий дифференциальный...
Тип: Изобретение
Номер охранного документа: 0002688227
Дата охранного документа: 21.05.2019
06.06.2019
№219.017.7401

Способ шелушения зерна овса

Изобретение относится к мукомольно-крупяной промышленности и может быть применено при проведении шелушения зерна овса. В процессе способа для перевода оболочек зерна в хрупкое состояние проводят предварительное вакуумирование зерна, находящегося в перфорированной гибкой оболочке с диаметром...
Тип: Изобретение
Номер охранного документа: 0002690476
Дата охранного документа: 03.06.2019
Показаны записи 81-90 из 217.
25.08.2017
№217.015.b3bb

Дифференциальный операционный усилитель с малым напряжением питания

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Техническим результатом является расширение диапазона изменения выходного напряжения устройства до уровней, близких к напряжениям на положительной и...
Тип: Изобретение
Номер охранного документа: 0002613842
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b502

Планарная индуктивность

Изобретение относится к пассивной элементной базе устройств радиотехники и связи и может найти широкое применение в различных усилителях, смесителях и RLC-фильтрах ВЧ и СВЧ диапазонов, радиоприемниках и радиопередатчиках и т.п. Технический результат: увеличение численных значений L планарной...
Тип: Изобретение
Номер охранного документа: 0002614188
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b96a

Биполярно-полевой мультидифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению разомкнутого мультидифференциального операционного усилителя при сохранении высокой стабильности нулевого уровня. Для этого предложен биполярно-полевой мультидифференциальный...
Тип: Изобретение
Номер охранного документа: 0002615071
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b973

Прецизионный двухкаскадный дифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении коэффициента усиления дифференциального сигнала в разомкнутом состоянии двухкаскадного ОУ до уровня 90÷400 дБ....
Тип: Изобретение
Номер охранного документа: 0002615070
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9ac

Rs-триггер

Изобретение относится к области вычислительной техники. Технический результат: создание RS-триггера, в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов. Для этого предложен RS-триггер, который содержит первый 1 (S) и второй 2 (R) логические входы...
Тип: Изобретение
Номер охранного документа: 0002615069
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9bd

Биполярно-полевой дифференциальный операционный усилитель

Изобретение относится к области радиотехники. Технический результат: повышение разомкнутого коэффициента усиления по напряжению операционного усилителя (ОУ) при сохранении высоких показателей по стабильности напряжения смещения нуля. Для этого предложен биполярно-полевой дифференциальный...
Тип: Изобретение
Номер охранного документа: 0002615068
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9be

Операционный усилитель

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат заключается в повышении прецизионности операционного усилителя в условиях дестабилизирующих факторов. Операционный усилитель...
Тип: Изобретение
Номер охранного документа: 0002615066
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bfe5

Дифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению в разомкнутом дифференциальном операционном усилителе при высокой температурной и радиационной стабильности статического режима транзисторов его промежуточного каскада. В схему...
Тип: Изобретение
Номер охранного документа: 0002616573
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c03e

Инструментальный усилитель с повышенным ослаблением входного синфазного сигнала

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входных синфазных сигналов инструментального усилителя....
Тип: Изобретение
Номер охранного документа: 0002616570
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.d063

Дифференциальный инструментальный усилитель с парафазным выходом

Изобретение относится к области аналоговой усилительной техники. Технический результат: повышение значения коэффициента передачи по напряжению. Для этого предложен дифференциальный инструментальный усилитель с парафазным выходом, который содержит неинвертирующий вход (1) устройства и синфазный...
Тип: Изобретение
Номер охранного документа: 0002621291
Дата охранного документа: 01.06.2017
+ добавить свой РИД