×
15.02.2019
219.016.ba94

Результат интеллектуальной деятельности: Способ автоматической обработки крупногабаритных тонкостенных изделий

Вид РИД

Изобретение

Аннотация: Изобретение относится к области обработки, а именно обрезки технологических припусков, краев, заусенцев, вскрытию технологических окон и др., крупногабаритных тонкостенных изделий из металлов, конструкционных материалов, пластмасс и др. Изобретение позволяет сократить время на выполнение операций базирования и фиксации деталей, а также на формирование скорректированных траекторий их обработки с использованием эталонных CAD-моделей. Технический результат изобретения заключается в автоматизации процессов формирования скорректированных траекторий движения режущих инструментов после базирования и фиксации обрабатываемых изделий. При этом задание траекторий движения режущего инструмента выполняется на основе комплексирования данных, получаемых от используемой системы технического зрения и эталонных CAD-моделей изделий. 1 ил.

Изобретение относится к области обработки (обрезки технологических припусков, краев, заусенцев, вскрытию технологических окон и др.) крупногабаритных тонкостенных изделий из металлов, конструкционных материалов, пластмасс и др.

Известно устройство слежения за траекторией в реальном масштабе времени при лазерной сварке с помощью робота, которое содержит программируемый логический контроллер, робот, устройство управления лазерной сваркой и сенсор, содержащий видеокамеру и устройство для обработки видеоданных. Сенсор расположен на устройстве лазерной сварки, он получает данные о положении и форме заготовки с помощью видеокамеры и корректирует траекторию движения устройства для лазерной сварки в реальном масштабе времени (см. CN 204413407 (U), МПК B23K26/21, 24.06.2015).

Недостатком этого устройства является то, что для качественной сварки видеосистема всегда должна точно определять изображение стыка свариваемых изделий. По CAD-моделям сваривать две детали нельзя, так как их точное базирование в рабочей области робота в рассматриваемом устройстве не предусмотрено.

Известен способ базирования крупногабаритных обводообразующих деталей, их механической обработки и сборки, включающий автоматическую настройку дискретных опор подвижных секций, ориентирование обводообразующей детали и фиксацию ее на опорах с помощью вакуумных прихватов, а также механическую обработку детали, использующий стойку с упорами и приводами, связанными с системой ЧПУ, перед автоматической настройкой дискретных опор на основе математической модели обводообразующей детали определяют координаты по оси OY в ортогональной системе координат XYZ осей подвижных секций и углы их поворота, а также координаты по оси OX стойки в соответствующих позициях и координаты упоров по оси OY в указанных позициях, автоматическую настройку дискретных опор подвижных секций осуществляют путем установки в указанные позиции и поворота подвижных секций, последовательной установки в соответствующие позиции и поворота стойки, выдвижения упоров стойки по оси OY на расчетные значения, а также централизованного подвода к ним в каждой позиции и фиксации опор подвижных секций, ориентирование обводообразующей детали производят по двум базовым отверстиям, для механической обработки детали используют робототехнический комплекс, включающий промышленный робот с многофункциональной головкой, в процессе механической обработки производят обработку детали по контуру и сверление сборочных отверстий многофункциональной головкой по программе при последовательном позиционировании промышленного робота в заданных позициях, после чего осуществляют операции по сборке панели с использованием упомянутых сборочных отверстий обводообразующей детали и сверление отверстий в полученной в результате сборки панели с использованием многофункциональной головки (см. RU 2165836 (С2), МПК B23P21/00, 27.04.2001).

Этот способ по своей технической сущности является наиболее близким к предлагаемому изобретению. Однако при фиксации тонкостенных крупногабаритных изделий описанным выше способом очень часто происходит смещение их положения и изменение ориентации в рабочей зоне многостепенного манипулятора. В результате реальное положение и ориентация изделия после фиксации не совпадет с ее математической моделью. Поэтому при точной обработке каждой такой детали потребуется дополнительно осуществлять коррекцию управляющей программы робота, на которую будет затрачено значительное время.

Задачей изобретения является устранение указанного выше недостатка и, в частности, сокращение времени на выполнение операций базирования и фиксации деталей, а также на формирование скорректированных траекторий их обработки с использованием эталонных CAD-моделей.

Технический результат изобретения заключается в автоматизации процессов формирования скорректированных траекторий движения режущих инструментов после базирования и фиксации обрабатываемых изделий. При этом задание траекторий движения режущего инструмента выполняется на основе комплексирования данных, получаемых от используемой системы технического зрения и эталонных CAD-моделей изделий.

Поставленная задача решается тем, что способ автоматической обработки тонкостенных крупногабаритных изделий, включающий автоматическую настройку опор устройства фиксации на основе эталонной полигональной CAD-модели изделия, заданной в первой системе координат и содержащей траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки, загрузку этой модели в управляющую манипулятором ЭВМ, содержащую систему управления, с системой технического зрения, работающую в первой системе координат, ориентирование обрабатываемого изделия и фиксацию его с помощью вакуумных присосок опор в рабочей зоне манипулятора, задание посредством системы управления манипулятором режима движения рабочего инструмента, установленного на манипуляторе, с обеспечением заданной обработки изделия отличается тем, что посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат, в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, затем координаты вершин всех исходных и полученных треугольников сохраняют, формируя уплотненное облако точек, затем выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода ICP (Iterative Closest Points) поиска ближайших точек, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки и получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии, выполняют интерполяцию траектории по базовым точкам.

Сопоставительный анализ признаков заявляемого способа с признаками аналога и прототипа свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения предназначены для решения следующих функциональных задач.

Признак «…посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат …» обеспечивает автоматическое получение трехмерной модели обрабатываемого изделия и пересчет координат каждой точки из этого облака из системы координат, связанной с системой технического зрения, в систему координат, связанную с манипулятором. Если система технического зрения (оптический или лазерный сканеры, стереокамера и др.) не может захватить в один кадр все изделие сразу, то требуется линейное перемещение этой системы относительно этого изделия.

Признак «…в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, затем координаты вершин всех исходных и полученных треугольников сохраняют, формируя уплотненное облако точек…» обеспечивает автоматическую подготовку эталонной CAD-модели изделия к последующей обработке.

Признак «…выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода ICP (Iterative Closest Points) поиска ближайших точек, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки и получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии, выполняют интерполяцию траектории по базовым точкам…» обеспечивает автоматическое формирование точной траектории движения рабочего инструмента манипулятора после закрепления изделия с возможным изменением его положения и ориентации.

На фиг. схематически показан способ автоматической обработки крупногабаритных тонкостенных изделий, где введены следующие обозначения: 1 – обрабатываемое изделие; 2 – опоры; 3 – устройство фиксации; 4 – первая система координат, в которой работает манипулятор; 5 – управляющая ЭВМ; 6 – многостепенной манипулятор; 7 – система управления манипулятора 6; 8 – вакуумные присоски; 9 – рабочий инструмент (лазер, устройство для гидроабразивного реза и др.); 10 – система технического зрения; 11 – вторая система координат, в которой работает система технического зрения 10.

Заявленный способ реализуется следующим образом.

С помощью системы 10 технического зрения сканируют закрепленное обрабатываемое изделие 1 и его координаты, полученные во второй системе 11 координат, запоминают в управляющей ЭВМ 5 в виде облака точек M. Если система 10 технического зрения не может сканировать крупногабаритное обрабатываемое изделие 1 одним кадром, то обеспечивают перемещение системы 10 технического зрения относительно изделия и делают несколько кадров, которые затем сшивают в управляющей ЭВМ 5, формируя единое облако М. После этого координаты каждой точки облака М, заданные во второй системе 11 координат, в управляющей ЭВМ 5 пересчитывают в первую систему 4 координат многостепенного манипулятора 6.

Затем с помощью управляющей ЭВМ 5 из базы данных выбирают полигональную CAD-модель обрабатываемого изделия 1, содержащую траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки. Эта полигональная модель представляет собой совокупность сегментов (поверхностей), описываемых набором треугольников, и содержит координаты всех вершин этих треугольников. Если оставить только координаты этих вершин, то полученное таким образом облако точек будет «разреженным». Его точки будут сосредоточены на изгибах модели и будут отсутствовать на более плоских участках. Это приведет к тому, что при последующем совмещении облака точек будут совмещаться с большими погрешностями.

Для уменьшения этих погрешностей требуется уплотнить облако точек, соответствующее CAD-модели. Для этого в каждом треугольнике, входящем в исходную полигональную CAD-модель, в зависимости от его площади генерируют дополнительные точки. Чем больше площадь треугольника, тем больше дополнительных точек генерируют. Для генерации дополнительных точек в каждом полигоне (треугольнике) CAD–модели выполняют следующие действия: находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и т.д. Затем координаты вершин всех (исходных и полученных) треугольников сохраняют, формируя, таким образом, уплотненное облако точек D. Количество точек в нем должно быть сопоставимо с количеством точек в облаке М, полученном от системы 10 технического зрения.

Затем трехмерную модель закрепленного обрабатываемого изделия 1, полученную в виде облака точек М в первой системе 4 координат, сопоставляют с облаком точек D и, соответственно, с траекторией обработки. При этом для сопоставления (совмещения) двух указанных облаков точек используют типовую процедуру компьютерной графики. Для этого используют локализацию заданного объекта в трехмерной сцене, применяя метод ICP (Iterative Closest Points) совмещения двух трехмерных моделей, представленных в виде облаков точек. Входными данными для работы этого метода являются два облака точек. Первое (передвигаемое) - уплотненное облако точек D, полученное из эталонной CAD-модели, а второе - облако M, полученное при сканировании.

Математически задачу совмещения двух облаков точек с помощью метода ICP формулируют в виде:

, (1)

, (2)

где E – ошибка совмещения облаков точек;

- квадрат расстояния между точками в k-ой паре ближайших точек из облаков D и M;

и – точки из облаков D и M, соответственно;

Nd, Nm - количество точек в облаках D и M, соответственно, которое может быть различным;

T(a, D) – функция трансформации облака точек D в облако точек M;

a – параметр функции трансформации;

a* – оптимальный параметр функции трансформации, который минимизирует функционал (1).

Для определенности передвигаемым облаком является облако D и Nm ≤ Nd.

Как видно из (1) и (2), задача совмещения двух облаков точек формулируется как задача минимизации среднеквадратичного расстояния между точками в парах ближайших точек этих облаков. При этом в параметр a функции T(a, D) входят элементы матрицы поворота и вектора смещения. Последовательность выполнения ICP на каждой итерации состоит из следующих шагов.

Для каждой точки , ищется ближайшая точка . Облака точек M и D при их построении часто содержат различное количество точек. При этом одной точке одного облака может соответствовать несколько ближайших к ней точек другого облака. В этом случае для одной точки одного облака формируется столько пар точек сколько ближайших к ней точек расположено в другом облаке, то есть Nd ≤ Nk.

Затем выполняется новый расчет параметра a функции T(a, D) с помощью известных способов численной оптимизации. После этого преобразование T(a, D) с новым параметром a применяется к облаку точек D. На следующем шаге с помощью выражения (1) рассчитывается ошибка E совмещения указанных облаков точек и сравнивается с предельным значением. Если полученное значение E для совмещаемых облаков точек М и D становится меньше предельного значения, то расчеты прекращаются. В противном случае указанные выше шаги расчетов продолжаются.

По итогам совмещения двух облаков получают функцию T(a*, D) трансформации облака точек D в облако точек M. Затем ее применяют к координатам базовых точек траектории обработки, заданной на исходной CAD-модели, и получают координаты базовых точек траектории обработки на зафиксированном в устройстве фиксации 3 обрабатываемого изделия 1, положение и ориентация которого отличается от исходной CAD-модели.

После интерполяции траектории по базовым точкам управляющая ЭВМ 5 включает режущий рабочий инструмент 9 и система управления 7 манипулятора 6 задает необходимый режим движения этого рабочего инструмента 9, обеспечивая обработку зафиксированного обрабатываемого изделия 1 с требуемой точностью по полученной траектории.

Реализация предложенного способа обработки крупногабаритных тонкостенных изделий из любых материалов не вызывает принципиальных затруднений, поскольку при его реализации используют только типовые системы и устройства.

Способ автоматической обработки тонкостенных крупногабаритных изделий, включающий автоматическую настройку опор устройства фиксации изделия на основе эталонной полигональной CAD-модели изделия, заданной в первой системе координат и содержащей траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки, загрузку этой модели в управляющую ЭВМ, содержащую систему управления манипулятором, с системой технического зрения, работающую в первой системе координат, ориентирование обрабатываемого изделия и фиксацию его с помощью вакуумных присосок упомянутых опор в рабочей зоне манипулятора, задание посредством системы управления манипулятором режима движения рабочего инструмента, установленного на манипуляторе, с обеспечением заданной обработки изделия, отличающийся тем, что посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат, в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит полигон в виде треугольника на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, координаты вершин всех исходных и полученных треугольников сохраняют с формированием уплотненного облака точек, выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода поиска ближайших точек ICP, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки, получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии и выполняют интерполяцию траектории по базовым точкам.
Способ автоматической обработки крупногабаритных тонкостенных изделий
Источник поступления информации: Роспатент

Показаны записи 31-40 из 171.
20.11.2017
№217.015.efa2

Рацемический 2,17аβ-дисульфамоилокси-3-метокси-d-гомо-8α-эстра-1,3,5(10)-триен в качестве ингибитора пролиферации опухолевых клеток mcf-7

Изобретение относится к рацемическому 2,17аβ-дисульфамоилокси-3-метокси-D-гомо-8α-эстра-1,3,5(10)-триену формулы в качестве ингибитора пролиферации опухолевых клеток МСF-7. Технический результат: получено новое соединение, обладающее свойствами ингибитора роста клеток рака молочной MCF-7.
Тип: Изобретение
Номер охранного документа: 0002629186
Дата охранного документа: 25.08.2017
29.12.2017
№217.015.f564

Устройство для защиты откосов траншеи от осыпания грунта

Изобретение относится к строительству и может быть использовано для укрепления стенок выемок в земле (траншеи, окопы), а также в качестве несъемной опалубки для монолитных ленточных фундаментов или в качестве лотков для наружных инженерных коммуникаций. Устройство для защиты откосов траншеи от...
Тип: Изобретение
Номер охранного документа: 0002637250
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f5e1

Преобразователь внешней кинетической энергии в электроэнергию

Изобретение относится к электроэнергетике и может быть использовано для выработки электроэнергии из колебательных движений различной природы. Преобразователь выполнен с возможностью преобразования волновой энергии в электроэнергию и содержит статор с витками электрической обмотки 4, снабженный...
Тип: Изобретение
Номер охранного документа: 0002637529
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f5f5

Композиция хлебопекарного улучшителя

Изобретение относится к хлебопекарной отрасли пищевой промышленности. Композиция хлебопекарного улучшителя содержит функциональную основу и в эффективных количествах пищевые добавки, включающие аскорбиновую кислоту, сернокислый аммоний и фосфорнокислый кальций однозамещенный. При этом в...
Тип: Изобретение
Номер охранного документа: 0002637209
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f74d

Способ очистки нефтесодержащих сточных вод

Изобретение относится к биотехнологии. Предложен способ очистки нефтесодержащих сточных вод. Способ включает очистку нефтесодержащих сточных вод в фильтре, содержащем корпус со съемными фильтрующими кассетами, обеспечивающими скорость фильтрации 0,1-0,3 м/ч. В качестве фильтрующей загрузки...
Тип: Изобретение
Номер охранного документа: 0002639276
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fb63

Морская ледостойкая платформа

Изобретение относится к морским мобильным платформам, предназначенным для размещения нефтегазового оборудования для добычи и разведки полезных ископаемых на мелководных участках шельфа замерзающих морей, предпочтительно на малых глубинах до 20 м. Морская ледостойкая платформа содержит плиту...
Тип: Изобретение
Номер охранного документа: 0002640345
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fcbf

Установка для комплексной переработки жидких радиоактивных отходов

Изобретение относится к атомной экологии. Установка для комплексной переработки жидких радиоактивных отходов (ЖРО) содержит узлы предочистки ЖРО и сорбционной доочистки фильтрата. Узел предочистки ЖРО содержит снабженную мешалкой цилиндрическую герметичную емкость с плоским дном. В полости...
Тип: Изобретение
Номер охранного документа: 0002638026
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.002f

Смесь для приготовления мороженого

Изобретение относится к пищевой промышленности и может быть использовано при производстве мороженого. Смесь для приготовления мороженого содержит молочную основу, подсластитель, стабилизатор, микроорганизмы и жидкость. Жидкость содержит 30-80 мас.% водного экстракта кальмара при гидромодуле 1:1...
Тип: Изобретение
Номер охранного документа: 0002629284
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0058

Композиция для приготовления кондитерских изделий на основе сбивных масс типа суфле

Изобретение относится к кондитерской отрасли и может быть использовано для приготовления, например, конфет. Предложена композиция для приготовления кондитерских изделий на основе сбивных масс типа суфле, содержащая подсластитель, антикристаллизатор, жировой компонент, молоко сгущенное цельное,...
Тип: Изобретение
Номер охранного документа: 0002629279
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0098

Смесь для приготовления мороженого

Изобретение относится к пищевой промышленности и может быть использовано при производстве мороженого. Смесь для приготовления мороженого содержит молочную основу, подсластитель, стабилизатор, микроорганизмы и жидкость. Жидкость содержит не менее 30 масс.% водного экстракта гребешка при...
Тип: Изобретение
Номер охранного документа: 0002629286
Дата охранного документа: 28.08.2017
Показаны записи 31-40 из 62.
20.11.2015
№216.013.9135

Самонастраивающийся электропривод

Изобретение относится к области автоматического управления электроприводами, в которых существенно повышаются величины моментов сухого трения. Технический результат заключается в обеспечении инвариантности электропривода к величине момента сухого трения, что обеспечивает неизменное качество в...
Тип: Изобретение
Номер охранного документа: 0002568789
Дата охранного документа: 20.11.2015
10.03.2016
№216.014.cc92

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано при создании электроприводов манипуляторов. Техническим результатом является обеспечение инвариантности динамических свойств электропривода к непрерывным и быстрым изменениям его моментных нагрузочных характеристик....
Тип: Изобретение
Номер охранного документа: 0002577204
Дата охранного документа: 10.03.2016
10.08.2016
№216.015.5450

Самонастраивающийся электропривод манипуляционного робота

Изобретение относится к самонастраивающейся системе управления электроприводом. Самонастраивающийся электропривод манипуляционного робота содержит электродвигатель, редуктор, датчики положения и скорости, сумматоры, блоки умножения, задатчики сигнала, квадраторы, дифференциатор и функциональные...
Тип: Изобретение
Номер охранного документа: 0002593735
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.66ed

Самонастраивающийся электропривод

Изобретение относится к самонастраивающейся системе управления электроприводом. Самонастраивающийся электропривод содержит последовательно соединенные первый сумматор, корректирующее устройство, усилитель, электродвигатель, связанный непосредственно с датчиком скорости и через редуктор - с...
Тип: Изобретение
Номер охранного документа: 0002592036
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8d69

Устройство для программного управления манипулятором

Изобретение относится к робототехнике и может быть использовано при создании контурных систем управления многостепенными манипуляторами. Задачей заявляемого изобретения является создание устройства управления, которое обеспечит выполнение технологических операций на протяженных объектах с...
Тип: Изобретение
Номер охранного документа: 0002604555
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a029

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами манипуляторов. Технический результат заключается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает получение моментного воздействия,...
Тип: Изобретение
Номер охранного документа: 0002606371
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a14c

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами манипуляторов. Технический результат заключается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает получение моментного воздействия,...
Тип: Изобретение
Номер охранного документа: 0002606372
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a65c

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами манипуляторов. Технический результат заключается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает получение моментного воздействия,...
Тип: Изобретение
Номер охранного документа: 0002608005
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.bbf8

Устройство для программного управления манипулятором

Изобретение относится к робототехнике и может быть использовано при создании контурных систем управления многостепенными манипуляторами. Изобретение направлено на создание устройства управления, обеспечивающего выполнение технологических операций на протяженных объектах с помощью типового...
Тип: Изобретение
Номер охранного документа: 0002615940
Дата охранного документа: 11.04.2017
26.08.2017
№217.015.e52c

Устройство формирования программных сигналов управления

Изобретение относится к области автоматического управления динамическими объектами и обеспечивает формирование программных траекторий перемещения программной точки с заданной скоростью. Устройство формирования программных сигналов управления содержит навигационную систему, первую, вторую и...
Тип: Изобретение
Номер охранного документа: 0002626437
Дата охранного документа: 27.07.2017
+ добавить свой РИД