×
07.02.2019
219.016.b7e1

Результат интеллектуальной деятельности: Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата

Вид РИД

Изобретение

Аннотация: Изобретение относится к области космической техники и может быть использовано в бесплатформенных инерциальных системах ориентации (БИСО) для орбитальных космических аппаратов (КА), измерительный модуль (блок чувствительных элементов -БЧЭ) которых содержит электростатические гироскопы (ЭСГ). Способ калибровки погрешностей ЭСГ БИСО в условиях орбитального КА заключается в последовательном вращении КА вокруг осей, связанных с его корпусом, вычислении углового положения КА относительно инерциальных осей по данным измерений астровизирующего устройства (АВУ), вычислении на основе априорных значений коэффициентов модели дрейфа калибруемого гироскопа, расчетных значений направляющих косинусов орта его кинетического момента в инерциальных осях, формирование по данным списывающих устройств гироскопа измеренных значений направляющих косинусов орта его кинетического момента в корпусных осях, вычисление оценок ухода гироскопа в инерциальных осях и их коррекцию. При этом по данным измерений АВУ осуществляют формирование идеального (без дрейфа) гироскопа. По измеренным значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный гироскопический трехгранник, вычисляя значения матрицы ориентации осей гироскопического трехгранника относительно корпусных осей блока гироскопов, формируют измеренные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, по расчетным значениям направляющих косинусов орта кинетического момента калибруемого и идеального гироскопов формируют правый ортогональный инерциальный трехгранник. Затем вычисляют значения матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника, формируют расчетные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, затем в моменты поступления данных от АВУ пересчитывают расчетные и измеренные значения направляющих косинусов орта кинетического момента калибруемого гироскопа на оси квазиинерциального трехгранника и формируют два скалярных измерения, первое измерение вычисляют как разность расчетного и измеренного значений косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, а второе измерение вычисляют как разность первых элементов расчетного и измеренного значений направляющих косинусов орта кинетического момента калибруемого гироскопа в осях квазиинерциального трехгранника, после чего осуществляют линеаризацию полученных скалярных измерений и с привлечением расчетной модели уходов гироскопа в осях квазиинерциального трехгранника вычисляют оценки погрешностей привязки измерительных осей калибруемого гироскопа относительно осей АВУ и оценки погрешностей априорных значений коэффициентов его модели дрейфов. Технический результат – повышение точности калибровки погрешностей ЭСГ БИСО. 2 ил.

Изобретение относится к области космической техники и может быть использовано в бесплатформенных инерциальных системах ориентации (БИСО) для орбитальных космических аппаратов (КА), блок чувствительных элементов (БЧЭ) которых содержит гироинерциальные измерители, например, электростатические гироскопы (ЭСГ).

Известен способ калибровки гироинерциальных измерителей (датчиков угловой скорости) бесплатформенной инерциальной системы ориентации для орбитальных КА [1] в условиях последовательных разворотов КА вокруг его осей рыскания, тангажа и крена с визированием и фиксацией параметров заданных астроориентиров с помощью астровизирующего устройства (АВУ) перед началом и после окончания каждого из калибровочных разворотов; расчета по результатам измерений коэффициентов примененной модели погрешности гироинерциальных измерителей и их корректировки.

Недостатком способа является низкая точность калибровки. Указанный недостаток обусловлен нестабильностью масштабных коэффициентов гироинерциальных измерителей во времени, погрешностями ориентации осей БЧЭ относительно корпусных осей КА, погрешностями ориентации корпусных осей АВУ относительно корпусных осей КА.

Известен также способ калибровки гироинерциальных измерителей (электростатических гироскопов) бесплатформенной инерциальной системы ориентации для орбитальных КА [2], который принят за прототип. При реализации способа калибруют составляющие суммарного вектора погрешностей углов привязки положения осей блока БЧЭ БИСО на ЭСГ, относительно опорных осей АВУ. Для этого осуществляют последовательные калибровочные развороты КА вокруг осей, связанных с корпусом КА, с визированием и фиксацией параметров заданных астроориентиров с помощью АВУ перед началом и после окончания каждого из разворотов. Осуществляют расчет погрешностей. Для расчета используют данные измерений полученные:

1) от АВУ:

- значения эталонного кватерниона характеризующего угловое положение корпусных осей xcyczc КА относительно инерциальной системы координат, моделируемой в алгоритмах АВУ;

2) от БИСО:

- значения приборного кватерниона характеризующего угловое положение корпусных осей xcyczc КА относительно инерциальной системы координат in1in2in3, моделируемой в алгоритмах БИСО и периодически корректируемой по данным АВУ.

Погрешности БИСО на ЭСГ с коррекцией по данным АВУ содержат погрешности привязки, как углового положения корпусных осей БЧЭ БИСО относительно корпусных осей КА, так и положения корпусных осей АВУ относительно корпусных осей КА. Для оценивания погрешностей формируют вектор измерений:

где - кватернион, сопряженный по отношению к кватерниону

Производят расчет погрешностей с использованием метода наименьших квадратов.

По результатам расчета корректируют коэффициенты примененной модели погрешности.

Недостатком способа является низкая точность калибровки погрешностей БЧЭ БИСО Указанный недостаток обусловлен тем, что:

- в процессе калибровки не учитывается дрейф ЭСГ;

- не учитываются погрешности углов привязки положения измерительных осей каждого ЭСГ относительно корпуса БЧЭ БИСО, что приводит к появлению составляющей погрешности от неортогональности измерительных осей БЧЭ.

В предлагаемом изобретении решается техническая проблема - совершенствование способа калибровки погрешностей ЭСГ БИСО в условиях орбитального КА.

Достигаемый технический результат - повышение точности калибровки погрешностей ЭСГ БИСО.

Поставленная задача изобретения решается тем, что в известном способе калибровки погрешностей ЭСГ БИСО в условиях орбитального КА, заключающегося в последовательном вращении КА вокруг осей, связанных с его корпусом; вычислении углового положения КА относительно инерциальных осей по данным измерений АВУ; вычислении на основе априорных значений коэффициентов модели дрейфа калибруемого гироскопа, расчетных значений направляющих косинусов орта его кинетического момента в инерциальных осях; формировании по данным списывающих устройств гироскопа измеренных значений направляющих косинусов орта его кинетического момента в корпусных осях, вычислении оценок ухода гироскопа в инерциальных осях и их коррекцию,

дополнительно по данным измерений АВУ осуществляют формирование идеального (без дрейфа) гироскопа; вычисляют текущие значения направляющих косинусов орта кинетического момента идеального гироскопа относительно инерциальных и относительно его корпусных осей, совпадающих с корпусными осями КА, при этом в начальный момент времени направление орта кинетического момента идеального гироскопа задают по одной из корпусных осей КА, ортогональной направлению орта кинетического момента калибруемого гироскопа;

по измеренным (с помощью списывающих устройств) значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный гироскопический трехгранник, вычисляя значения матрицы ориентации осей гироскопического трехгранника относительно корпусных осей блока гироскопов, при этом направление орта кинетического момента идеального гироскопа задают в условиях ортогонализации гироскопического трехгранника в качестве опорного направления;

формируют измеренные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, по расчетным (на основе априорных значений коэффициентов модели дрейфов) значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный инерциальный трехгранник, вычисляют значения матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника, при этом направление орта кинетического момента идеального гироскопа задают в условиях ортогонализации инерциального трехгранника в качестве опорного направления;

формируют расчетные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, при этом после коррекции положения орта кинетического момента калибруемого гироскопа в инерциальных осях по данным АВУ формируют правый ортогональный квазиинерциальный трехгранник, вычисляют значения матрицы ориентации квазиинерциального трехгранника относительно инерциального трехгранника, которые в этот момент времени приравнивают значениям матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника;

затем в моменты поступления данных от АВУ пересчитывают расчетные и измеренные значения направляющих косинусов орта кинетического момента калибруемого гироскопа на оси квазиинерциального трехгранника и формируют два скалярных измерения, первое измерение вычисляют как разность расчетного и измеренного значений косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, а второе измерение вычисляют как разность первых элементов расчетного и измеренного значений направляющих косинусов орта кинетического момента калибруемого гироскопа в осях квазиинерциального трехгранника;

после чего осуществляют линеаризацию полученных скалярных измерений и с привлечением расчетной модели уходов гироскопа в осях квазиинерциального трехгранника вычисляют оценки погрешностей углов привязки осей калибруемого гироскопа относительно осей АВУ и оценки погрешностей априорных значений коэффициентов его модели дрейфов.

Предлагаемый способ предусматривает калибровку по данным АВУ погрешностей индивидуально каждого из ЭСГ, входящих в состав БЧЭ БИСО.

Сущность предлагаемого технического решения поясняется чертежами фиг. 1 и 2. На фиг. 1 приведена ориентация осей орбитальной системы координат (ОСК) xoyozo относительно осей инерциальной системы координат (ИСК) in1in2in3.

На фиг. 2 приведена ориентация осей связанной с КА системы координат (ССК) xcyczc относительно осей ОСК.

На чертежах приняты следующие обозначения:

ИСК - инерциальная система координат (in1in2in3), правый ортогональный трехгранник с началом в центре масс Земли. Ось in3 направлена по оси суточного вращения Земли, ось in1 - в точку весеннего равноденствия;

Ое - центр масс Земли;

ОСК - орбитальная система координат (xoyozo), правый ортогональный трехгранник с началом в центре масс КА. Ось yo направлена по радиус-вектору r, ось xo - лежит в плоскости орбиты по направлению движения;

ССК - связанная с КА система координат (xcyczc), правый ортогональный трехгранник с началом в центре масс КА. Ось хс - продольная ось КА, ось ус совпадает с осью yo при нулевых значениях углов тангажа и крена КА;

М - центр масс КА;

ψ,θ,γ - углы Эйлера-Крылова (рыскание, тангаж и крен), определяющие угловую ориентацию осей КА xcyczc относительно ОСК xoyozo;

- производные углов Эйлера-Крылова;

- радиус-вектор и вектор линейной скорости центра масс КА относительно инерциального пространства;

Vr, Vϑ - радиальная и трансверсальная составляющие вектора линейной скорости КА;

Ω - долгота восходящего узла;

i - наклонение орбиты;

u - аргумент широты или фаза КА.

Предлагаемый способ реализуется при выполнении следующих технологических операций:

1. По результатам измерений параметров угловой ориентации КА, проводимых АВУ и БИСО, формируют исходные данные:

- значения эталонного кватерниона или матрицы ориентации, характеризующих угловое положение корпусных осей xcyczc КА (далее - оси КА) относительно ИСК, моделируемой в алгоритмах АВУ;

- значения направляющих косинусов орта кинетического момента калибруемого ЭСГi где: (i=1, 2, 3…), в его корпусных осях;

- априорные значения матрицы Ckn_i,c ориентации измерительных осей калибруемого ЭСГi относительно осей КА;

- априорные значения коэффициентов модели дрейфа (КМД) калибруемого ЭСГi;

- расчетные значения направляющих косинусов орта кинетического момента калибруемого ЭСГi в инерциальных осях.

2. По данным эталонной матрицы ориентации осуществляют формирование идеального (без дрейфа) гироскопа (далее ЭСГ-И). Для чего:

- задают направление орта кинетического момента ЭСГ-И по одной из корпусных осей КА, ортогональной направлению орта кинетического момента калибруемого ЭСГi;

- определяют текущие значения направляющих косинусов где: t0 - начальный момент времени, орта кинетического момента ЭСГ-И в его корпусных осях, совпадающих с осями КА;

- осуществляют расчет направляющих косинусов орта кинетического момента ЭСГ-И в инерциальных осях.

3. Производят прогнозирование уходов калибруемого ЭСГi в ИСК, вычисляют расчетные значения направляющих косинусов орта кинетического момента ЭСГi в инерциальных осях здесь:

- расчетные значения дрейфов ЭСГi в корпусных осях, как функции от априорных значений КМД [3] и текущих значений

4. По значениям направляющих косинусов орта кинетического момента идеального ЭСГ-И и измеренным значениям направляющих косинусов орта кинетического момента калибруемого ЭСГi в корпусных осях, приведенным к корпусным осям БЧЭ, формируют правый ортогональный трехгранник q1q2q3, положение которого относительно корпусных осей БЧЭ характеризуется матрицей Cq,b, орты-столбцы которой согласно принятому условию ортогонализации равны:

где θS - «измеренное» значение угла между ортами ЭСГ.

5. По значениям направляющих косинусов орта кинетического момента идеального ЭСГ-И и расчетным значениям направляющих косинусов орта кинетического момента калибруемого ЭСГi в инерциальных осях формируют инерциальный приборный трехгранник in1in2in3, положение которого относительно трехгранника q1q2q3 характеризуется матрицей Cq,in, орты-столбцы которой согласно принятому условию ортогонализации равны

где θR - расчетное значение угла между ортами ЭСГ, причем

Знак - означает скалярное произведение векторов.

При этом, как известно [3], значения орта вычисляют как

Здесь

где - расчетные значения дрейфа ЭСГi в корпусных осях, как функции от априорных значений КМД и текущих значений

6. Формируют квазиинерциальную int1int2int3 систему координат (квази-ИСК), дискретно учитывающую прецессию гироскопического трехгранника q1q2q3 вследствие дрейфов ЭСГi, положение которой относительно ИСК определяется матрицей Cin,int, равной значениям матрицы (Cq,in)T в моменты после коррекции положения ЭСГi по данным АВУ.

Пересчитывают на оси квази-ИСК расчетные и измеренные значения орта кинетического момента ЭСГi в моменты прихода данных от АВУ:

Введение квази-ИСК int1int2int3 позволяет осуществить линеаризацию расчетной модели уходов ЭСГi (погрешностей вычисления направляющих косинусов ортов их кинетических моментов) и соответствующих измерений в точках пространства состояния, дискретно движущихся вместе с прецессией векторов кинетических моментов ЭСГi.

7. В моменты времени прихода данных от АВУ формируют разностные скалярные измерения:

где: - первые элементы соответствующих векторов

Учитывая, что погрешности формирования значений орта кинетического момента ЭСГ-И, соответственно в инерциальных осях и осях БЧЭ, определяются уровнем погрешностей АВУ, измерения (1), линеаризованные в точках пространства состояния, дискретно движущихся вместе с прецессией вектора кинетического момента ЭСГi, будут равны:

где: - соответственно первый и второй элементы вектора уходов ЭСГi в квази-ИСК, которые описывают линеаризованной расчетной моделью вида:

здесь - погрешности прогнозирования дрейфов ЭСГi в осях квази-ИСК, обусловленные погрешностями априорных значений КМД ЭСГi;

- Ckn_i,int(1стр.), Ckn_i,int(2стр.) - соответственно первая и вторая строки матрицы ориентации корпусных осей ЭСГi относительно квази-ИСК;

- δΛ - погрешность углов привязки измерительной оси калибруемого ЭСГi относительно его корпусных осей и соответственно корпусных осей АВУ, приведенных к осям КА;

ν1, v2 -шумы измерений, включающие погрешности списывающих устройств АВУ и погрешности списывающих устройств ЭСГi.

Разностные скалярные измерения (1) формируют с дискретностью поступления данных от АВУ в течение всего времени калибровочного вращения КА.

Обработку измерений (1) с учетом расчетной модели уходов ЭСГi (3) осуществляют с помощью алгоритма фильтра Калмана, на выходе которого вычисляют оценки уходов ЭСГi сначала в осях квази-ИСК, затем - в осях ИСК, а также вычисляют оценки погрешностей δΛ углов привязки измерительной оси калибруемого ЭСГi и оценки погрешностей ΔКМД априорных значений коэффициентов его модели дрейфов. Для линеаризации измерений и расчетной модели уходов ЭСГi оценки всех погрешностей поступают в обратную связь для коррекции уходов ЭСГi после обработки каждого поступившего измерения.

По сравнению со способом прототипом точность калибровки погрешностей ЭСГ бескарданной инерциальной системы ориентации в условиях орбитального КА повышается за счет:

- учета и исключения из результатов измерений составляющей погрешности, обусловленной дрейфом ЭСГ;

- учета и исключения составляющей погрешности, обусловленной - погрешностью углов привязки δΛ измерительной оси калибруемого ЭСГi относительно его корпусных осей.

Таким образом, поставленная цель достигнута.

На предприятии АО «Концерн «ЦНИИ «Электроприбор» предлагаемый способ проверен при проведении летных испытаний бескарданной инерциальной системы ориентации с ЭСГ на орбитальном КА «Ресурс». Получены положительные результаты.

Используемая литература:

1. Патент РФ №2092402.

2. Дюмин А.Ф., Корабельщиков В.В., Платонов С.Н., Суринский Д.М. Повышение точности астрокоррекции бесплатформенной инерциальной системы ориентации на электростатических гироскопах // Гироскопия и навигация, 2005, №1(48), С. 76-83.

3. Гуревич С.С., Гусинский В.З., Ландау Б.Е. и др. Система ориентации орбитального КА на базе бескарданных электростатических гироскопов со сплошным ротором. // VIII Санкт-Петербургская международная конференция по интегрированным системам, 2001, с. 52-59.

Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата, заключающийся в последовательном вращении космического аппарата вокруг осей, связанных с его корпусом, вычислении углового положения космического аппарата относительно инерциальных осей по данным измерений астровизирующего устройства, вычислении на основе априорных значений коэффициентов модели дрейфа калибруемого гироскопа, расчетных значений направляющих косинусов орта его кинетического момента в инерциальных осях, формирование по данным списывающих устройств гироскопа измеренных значений направляющих косинусов орта его кинетического момента в корпусных осях, вычисление оценок ухода гироскопа в инерциальных осях и их коррекцию, отличающийся тем, что дополнительно по данным измерений астровизирующего устройства осуществляют формирование идеального (без дрейфа) гироскопа; вычисляют текущие значения направляющих косинусов орта кинетического момента идеального гироскопа относительно инерциальных и относительно его корпусных осей, совпадающих с корпусными осями космического аппарата, при этом в начальный момент времени направление орта кинетического момента идеального гироскопа задают по одной из корпусных осей космического аппарата, ортогональной направлению орта кинетического момента калибруемого гироскопа, по измеренным (с помощью списывающих устройств) значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный гироскопический трехгранник, вычисляя значения матрицы ориентации осей гироскопического трехгранника относительно корпусных осей блока гироскопов, при этом направление орта кинетического момента идеального гироскопа задают в условиях ортогонализации гироскопического трехгранника в качестве опорного направления, формируют измеренные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, по расчетным (на основе априорных значений коэффициентов модели дрейфов) значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный инерциальный трехгранник, вычисляют значения матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника, при этом направление орта кинетического момента идеального гироскопа задают в условиях ортогонализации инерциального трехгранника в качестве опорного направления, формируют расчетные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, при этом после коррекции положения орта кинетического момента калибруемого гироскопа в инерциальных осях по данным астровизирующего устройства формируют правый ортогональный квазиинерциальный трехгранник, вычисляют значения матрицы ориентации квазиинерциального трехгранника относительно инерциального трехгранника, которые в этот момент времени приравнивают значениям матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника, затем в моменты поступления данных от астровизирующего устройства пересчитывают расчетные и измеренные значения направляющих косинусов орта кинетического момента калибруемого гироскопа на оси квазиинерциального трехгранника и формируют два скалярных измерения, первое измерение вычисляют как разность расчетного и измеренного значений косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, а второе измерение вычисляют как разность первых элементов расчетного и измеренного значений направляющих косинусов орта кинетического момента калибруемого гироскопа в осях квазиинерциального трехгранника, после чего осуществляют линеаризацию полученных скалярных измерений и с привлечением расчетной модели ухода гироскопа в осях квазиинерциального трехгранника вычисляют оценки погрешностей углов привязки измерительной оси калибруемого гироскопа относительно осей астровизирующего устройства и оценки погрешностей априорных значений коэффициентов его модели дрейфов.
Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата
Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата
Источник поступления информации: Роспатент

Показаны записи 21-30 из 87.
26.08.2017
№217.015.e478

Способ управления подвесом ротора электростатического гироскопа

Изобретение относится к гироскопической технике, а именно к способам управления подвесами роторов электростатических гироскопов (ЭСГ). Способ управления подвесом ротора электростатического гироскопа, согласно которому в начале процесса взвешивания создают временную паузу, преобразуют величину...
Тип: Изобретение
Номер охранного документа: 0002626572
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f118

Способ изготовления ротора электростатического гироскопа и устройство для осуществления этого способа

Изобретение относится к способу и устройству для изготовления ротора электростатического гироскопа. Процесс изготовления ротора включает формообразование сферической заготовки ротора, его балансировку и нанесение тонкопленочного износостойкого покрытия переменной толщины. Образуют...
Тип: Изобретение
Номер охранного документа: 0002638870
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f28c

Способ взвешивания ротора гироскопа в электростатическом подвесе

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гироскопов с электростатическим подвесом ротора. На ротор подают переменное напряжение, а к силовым электродам подвеса прикладывают постоянное напряжение. Измеряют переменные...
Тип: Изобретение
Номер охранного документа: 0002637185
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f2c1

Датчик индукционного лага повышенной прочности

Изобретение относится к области навигационного приборостроения и предназначено для использования в индукционных лагах надводных кораблей и глубоководных аппаратов. Датчик индукционного лага, содержащий электромагнитную систему возбуждения и измерительные электроды, при этом электромагнитная...
Тип: Изобретение
Номер охранного документа: 0002637377
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f464

Способ определения погрешности двухстепенного гироблока

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Предложенный способ определения погрешности двухстепенного гироблока заключается: в установке гироблока на неподвижном основании; выставке оси...
Тип: Изобретение
Номер охранного документа: 0002637186
Дата охранного документа: 30.11.2017
19.01.2018
№218.016.0990

Волномерный буй с инерциальным измерительным модулем на основе микромеханических датчиков

Изобретение относится к области измерительной техники и может быть использовано для измерения спектральных и статистических характеристик трехмерного морского волнения. Волномерный буй содержит корпус, обеспечивающий необходимую плавучесть, герметичный отсек, в нижней части которого размещен...
Тип: Изобретение
Номер охранного документа: 0002631965
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.1065

Интегрированная инерциально-спутниковая система ориентации и навигации

Изобретение относится к области навигационного приборостроения летательных аппаратов и морских судов. Технический результат состоит в повышении точности выработки параметров ориентации объекта при сокращении длины антенной базы до уровня длины волны несущей частоты спутникового сигнала,...
Тип: Изобретение
Номер охранного документа: 0002633703
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.1e54

Способ управления подвесом ротора электростатического гироскопа

Изобретение относится к гироскопической технике, а именно к способам управления подвесами роторов электростатических гироскопов (ЭСГ). Сущность изобретения заключается в том, что способ управления подвесом ротора электростатического гироскопа дополнительно содержит этапы, на которых после...
Тип: Изобретение
Номер охранного документа: 0002640967
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1e91

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что электроды на внутренней поверхности цилиндра двухстепенного поплавкового гироскопа...
Тип: Изобретение
Номер охранного документа: 0002641018
Дата охранного документа: 15.01.2018
17.02.2018
№218.016.2aa5

Устройство для измерений мгновенных угловых перемещений качающейся платформы

Устройство для измерений мгновенных угловых перемещений качающейся платформы состоит из датчика измеряемого мгновенного плоского угла и неподвижного отсчетного устройства. Датчик угла выполнен в виде многозначных голографических мер угла, формирующих каждая под воздействием внешнего оптического...
Тип: Изобретение
Номер охранного документа: 0002642975
Дата охранного документа: 29.01.2018
Показаны записи 21-30 из 32.
10.07.2018
№218.016.6ee5

Способ изготовления ротора шарового гироскопа

Изобретение относится к области точного приборостроения и может быть использовано при изготовлении роторов шаровых гироскопов, в частности криогенного гироскопа. Согласно изобретению формообразование заготовки ротора осуществляют посредством изготовления сферы диаметром, большим, чем конечный...
Тип: Изобретение
Номер охранного документа: 0002660756
Дата охранного документа: 09.07.2018
26.10.2018
№218.016.962c

Устройство для измерения выходного сигнала пьезоэлектрического датчика

Изобретение относится к области измерительной техники, а именно к устройствам с пьезоэлектрическим датчиком, которые преобразуют величину переменных сил давления в электрический сигнал. Устройство для измерения выходного сигнала пьезоэлектрического датчика содержит первый пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002670712
Дата охранного документа: 24.10.2018
16.01.2019
№219.016.b045

Способ калибровки погрешностей бескарданной инерциальной системы на электростатических гироскопах в условиях орбитального полета

Изобретение относится к гироскопической технике, а именно к способам калибровки погрешностей бескарданной инерциальной системы на электростатических гироскопах в условия полета космического аппарата. Способ калибровки погрешностей бескарданной инерциальной системы на электростатических...
Тип: Изобретение
Номер охранного документа: 0002677099
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b072

Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении и эксплуатации двухстепенных поплавковых гироскопов с бесконтактными опорами гирокамеры. Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа дополнительно...
Тип: Изобретение
Номер охранного документа: 0002677091
Дата охранного документа: 15.01.2019
02.02.2019
№219.016.b667

Способ изготовления чувствительного элемента криогенного гироскопа

Изобретение относится к области точного приборостроения и может быть использовано при изготовлении чувствительных элементов (далее - ЧЭ) криогенного гироскопа (далее - КГ). Сущность изобретения заключается в том, что способ изготовления чувствительного элемента криогенного гироскопа...
Тип: Изобретение
Номер охранного документа: 0002678706
Дата охранного документа: 31.01.2019
02.02.2019
№219.016.b678

Способ изготовления чувствительного элемента криогенного гироскопа

Использование: для изготовления криогенного гироскопа. Сущность изобретения заключается в том, что способ изготовления чувствительного элемента криогенного гироскопа содержит: формообразование сферического ротора, представляющего собой заготовку из углеродного нанокомпозита, покрытую...
Тип: Изобретение
Номер охранного документа: 0002678707
Дата охранного документа: 31.01.2019
17.03.2019
№219.016.e245

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что корпус двухстепенного поплавкового гироскопа выполнен в виде двух цилиндров, установленных...
Тип: Изобретение
Номер охранного документа: 0002682131
Дата охранного документа: 14.03.2019
05.04.2019
№219.016.fd39

Способ обработки информации в гидроакустической антенне

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников. Решаемая техническая проблема - совершенствование способа обработки информации в...
Тип: Изобретение
Номер охранного документа: 0002684003
Дата охранного документа: 03.04.2019
24.05.2019
№219.017.5d7c

Способ определения погрешности двухстепенного гироблока

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Достигаемый технический результат - повышение точности (достоверности) определения составляющей погрешности гироблока, обусловленной резонансом его...
Тип: Изобретение
Номер охранного документа: 0002688915
Дата охранного документа: 22.05.2019
04.06.2019
№219.017.733f

Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа

Изобретение относится к измерительной технике и может быть использовано при изготовлении прецизионных приборов на газодинамической опоре. Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа включает определение времени выбега ротора на последовательных этапах...
Тип: Изобретение
Номер охранного документа: 0002690231
Дата охранного документа: 31.05.2019
+ добавить свой РИД